《全等三角形》复习课件1.ppt

上传人:qwe****56 文档编号:22270263 上传时间:2022-06-23 格式:PPT 页数:27 大小:1.02MB
返回 下载 相关 举报
《全等三角形》复习课件1.ppt_第1页
第1页 / 共27页
《全等三角形》复习课件1.ppt_第2页
第2页 / 共27页
点击查看更多>>
资源描述

《《全等三角形》复习课件1.ppt》由会员分享,可在线阅读,更多相关《《全等三角形》复习课件1.ppt(27页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。

1、知识回顾知识回顾-全等三角形全等三角形1、定义- 能够完全重合的两个三角形叫做全等三角形。2、性质- 全等三角形的对应边、对应角相等。3、一个图形经过平移、翻折、旋转后,位置发生了变化, 但是它的形状和大小并没有改变。即:平移、翻折、 旋转前后的两个图形全等。 寻找对应元素的规律寻找对应元素的规律:知识回顾知识回顾-全等三角形全等三角形1、有公共边的,公共边是对应边;2、有公共角的,公共角是对应角;3、有对顶角的,对顶角是对应角;4、两个全等三角形最大的边是对应边,最小的边是对应边;5、两个全等三角形最大的角是对应角,最小的角是对应角;知识回顾知识回顾-SSS1、三边对应相等的两个三角形全等、

2、三边对应相等的两个三角形全等.-SSS2、数学语言表达:BACDEF在在ABC与与DEF中中AB=DEAC=DFBC=EFABC DEF(SSS)牛刀小试牛刀小试如图,如图,AB=AC,AE=AD,BD=CE,求证:求证:AEB ADC。CABDE证明:证明:BD=CE BD-ED=CE-ED, 即即BE=CD。在在AEB和和ADC中,中,AB=ACAE=ADBE=CD AEB ADC (sss)知识回顾知识回顾-SAS1、两边和它们的夹角对应相等的两个三角形全等-SAS2、数学语言表达:ACBACB证明证明:在在ABC与与A B C 中中AB=A B A=AAC=A CABC ABC(SAS

3、)牛刀小试牛刀小试如图,如图,AC=BDAC=BD,CAB=DBACAB=DBA,你能,你能判断判断BC=ADBC=AD吗?说明理由。吗?说明理由。ABCD证明: 在ABC与BAD中AC=BDCAB=DBAAB=BAABCDEF(SAS)知识回顾知识回顾-ASA1、两角和它们的夹边对应相等的两个三角形全等-ASA2、数学语言表达:A=D (已知(已知 ) AB=DE(已知(已知 )B=E(已知(已知 )在在ABC和和DEF中中 ABC DEF(ASA)AB CDEF牛刀小试牛刀小试如图,已知点如图,已知点D在在AB上,点上,点E在在AC上,上,BE和和CD相相交于点交于点O,AB = AC,B

4、 = C.求证:求证:BD = CEABCDEO证明证明 :在:在ADC和和AEB中中A=A(公共角)(公共角)AC=AB(已知)(已知)C=B(已知)(已知)ADC AEB(ASA)AD=AE(全等三角形的对应边相等)(全等三角形的对应边相等)又又AB=AC(已知)(已知) AB-AD=AC-AE即即BD=CE(等式性质)(等式性质)知识回顾知识回顾-AAS1、两个角和其中一个角的对边对应相等的两个三角形 全等-AAS2、数学语言表达 A=D (已知)(已知) B=E(已知(已知 ) BC=EF(已知(已知 )在在ABC和和DEF中中 ABC DEF(AAS)AB CDEF牛刀小试牛刀小试已

5、知,如图,已知,如图,1=2,C=D 求证:求证:AC=AD CADB12证明:证明:在在ABD和和ABC中中1=2 (已知)(已知)D=C(已知)(已知) AB=AB(公共边)(公共边)ABD ABC (AAS)AC=AD (全等三角形对应(全等三角形对应边相等)边相等)知识回顾知识回顾-HL1、斜边和一条直角边对应相等的两个直角三角形 全等-HL2、数学语言表达:C=C=90在RtABC和Rt 中CBAAB=BABC=CBRtABC(HL)CBARt ABCA BC 已知:如图,在ABC和ABD中,ACBC, ADBD,垂足分别为C,D,AD=BC,求证: BD=AC.ABDC证明: AC

6、BC, ADBD C=D=90 在RtABC和RtBAD中 ABBABCAD RtABC RtBAD (HL)ABD=AC牛刀小试牛刀小试知识总结:知识总结:一般三角形一般三角形 全等的条件全等的条件:1.1.定义(重合)法;定义(重合)法;2.SSS2.SSS;3.SAS3.SAS;4.ASA4.ASA;5.AAS.5.AAS.直角三角形直角三角形 全等全等特有特有的条件:的条件:HL.HL.包括直角三角形包括直角三角形不包括其它形不包括其它形状的三角形状的三角形解题中解题中常用的常用的4 4种方法种方法方法总结-证明两个三角形全等的基本思路证明两个三角形全等的基本思路1、已知两边、已知两边

7、 找第三边找第三边 (SSS)找夹角找夹角(SAS)2、已知一边一角、已知一边一角已知一边和它的邻角已知一边和它的邻角找是否有直角找是否有直角 (HL)已知一边和它的对角已知一边和它的对角找这边的另一个邻角找这边的另一个邻角(ASA)找这个角的另一个边找这个角的另一个边(SAS)找这边的对角找这边的对角 (AAS)找一角找一角(AAS)已知角是直角,找一边已知角是直角,找一边(HL)3、已知两角、已知两角找两角的夹边找两角的夹边(ASA)找夹边外的任意边找夹边外的任意边(AAS)一、挖掘一、挖掘“隐含条件隐含条件”判全等判全等1.1.如图(如图(1 1),),AB=CDAB=CD,AC=BDA

8、C=BD,则,则ABCABCDCBDCB吗吗? ?说说理由说说理由ADBC图(1)2.2.如图(如图(2 2),点),点D D在在ABAB上,点上,点E E在在ACAC上,上,CDCD与与BEBE相交于点相交于点O O,且,且AD=AE,AB=AC.AD=AE,AB=AC.若若B=20B=20,CD=5cm,CD=5cm,则,则C=C= , ,BE=BE= . .说说理由说说理由. .BCODEA图(2)3.3.如图(如图(3 3),),ACAC与与BDBD相交于相交于O,O,若若OB=ODOB=OD,A=CA=C,若,若AB=3cmAB=3cm,则,则CD=CD= . . 说说理由说说理由.

9、 . ADBCO图(3)205cm3cm学习提示:学习提示:公共边,公共角公共边,公共角,对顶角对顶角这些都是隐含的边,角相等的条件!这些都是隐含的边,角相等的条件!4、如图,已知、如图,已知AD平分平分BAC, 要使要使ABD ACD, 根据根据“SAS”需要添加条件需要添加条件 ; 根据根据“ASA”需要添加条需要添加条件件 ; 根据根据“AAS”需要添加条需要添加条件件 ;ABCDAB=ACAB=ACBDA=CDABDA=CDAB=CB=C友情提示:添加条件的题目友情提示:添加条件的题目. .首先要首先要找到已具备的条件找到已具备的条件, ,这些条件有些是这些条件有些是题目已知条件题目已

10、知条件 , ,有些是图中隐含条件有些是图中隐含条件. .二二. .添条件判全等添条件判全等三、熟练转化“间接条件” 判全等5如图,如图,AE=CF,AFD=CEB,DF=BE,AFD与与 CEB全等吗?为什么?全等吗?为什么?ADBCFE7.“三月三,放风筝三月三,放风筝”如图(如图(6)是小东同学自己)是小东同学自己做的风筝,他根据做的风筝,他根据AB=AD,BC=DC,不用度量,不用度量,就知道就知道ABC=ADC。请用所学的知识给予。请用所学的知识给予说明。说明。6.如图(如图(5)CAE=BAD,B=D,AC=AE,ABC与与ADE全等吗?全等吗?为什么?为什么?ACEBD 5.5.如

11、图(如图(4 4)AE=CFAE=CF,AFD=CEBAFD=CEB,DF=BEDF=BE,AFDAFD与与 CEBCEB全等吗?为什么?全等吗?为什么?解:解:AE=CF(已知已知)ADBCFEAEFE=CFEF(等量减等量,差相等等量减等量,差相等)即即AF=CE在在AFD和和CEB中,中, AFD CEBAFD=CEB(已知已知)DF=BE(已知已知)AF=CE(已证已证)(SAS)6.如图(如图(5)CAE=BAD,B=D,AC=AE,ABC与与ADE全等吗?为什么?全等吗?为什么?ACEBD解:解: CAE=BAD(已知已知) CAE+BAE=BAD+BAE (等量减等量,差相等等量

12、减等量,差相等)即即BAC=DAE在在ABC和和ADE中,中, ABC ADEBAC=DAE(已证已证)AC=AE(已知已知)B=D(已知已知)(AAS)7.“三月三,放风筝三月三,放风筝”如图(如图(6)是小东同)是小东同学自己做的风筝,他根据学自己做的风筝,他根据AB=AD,BC=DC,不用度量,就知道不用度量,就知道ABC=ADC。请用。请用所学的知识给予说明。所学的知识给予说明。解解: 连接连接ACADC ABC(SSS) ABC=ADC(全等三角形的对应角相等全等三角形的对应角相等)在在ABC和和ADC中,中, BC=DC(已知已知)AC=AC(公共边公共边)AB=AD(已知已知)方

13、法总结证明两个三角形全等的基本思路:证明两个三角形全等的基本思路:(1):已知两边):已知两边 找第三边找第三边(SSS)找夹角找夹角 (SAS)(2):已知一边一角已知一边一角已知一边和它的邻角已知一边和它的邻角找是否有直角找是否有直角 (HL)已知一边和它的对角已知一边和它的对角找这边的另一个邻角找这边的另一个邻角(ASA)找这个角的另一个边找这个角的另一个边(SAS)找这边的对角找这边的对角 (AAS)找一角找一角(AAS)已知角是直角,找一边已知角是直角,找一边(HL)(3):已知两角已知两角找两角的夹边找两角的夹边(ASA)找夹边外的任意边找夹边外的任意边(AAS)8 . 测量如图河

14、的宽度,某人在河的对岸找到一参照物测量如图河的宽度,某人在河的对岸找到一参照物树木,视线树木,视线 与河岸垂直,然后该人沿河岸与河岸垂直,然后该人沿河岸步行步(每步约步行步(每步约0.75M)到)到O处,进行标记,处,进行标记,再向前步行再向前步行10步到步到D处,最后背对河岸向前步行处,最后背对河岸向前步行20步,此时树木步,此时树木A,标记,标记O,恰好在同一视线上,则,恰好在同一视线上,则河的宽度为河的宽度为 米。米。15ABODC实际应用88120204040FEDCBA9.9.如图如图, , ABCABC与与DEFDEF是否全等是否全等? ?为什么为什么? ?已知,已知,ABC和和E

15、CD都是等边三角形,且点都是等边三角形,且点B,C,D在一条直在一条直线上求证:线上求证:BE=AD EDCAB变式:变式:以上条件不变,将以上条件不变,将ABC绕点绕点C旋转一定角度,旋转一定角度,以上的结论海成立吗?以上的结论海成立吗?证明证明: ABC和和ECD都是等边三角形都是等边三角形 AC=BC DC=EC BCA=DCE=60 BCA+ACE=DCE+ ACE即即BCE=DCA在在ACD和和BCE中中 AC=BC BCE=DCA DC=EC ACD BCE (SAS) BE=AD拓展延伸课堂总结课堂总结学习全等三角形应注意以下几个问题:(1):1):要正确区分要正确区分“对应边对应边”与与“对边对边”,“对应对应角角”与与 “对角对角”的不同含义;的不同含义;(2 2):表示两个三角形全等时,表示对应顶点的):表示两个三角形全等时,表示对应顶点的字母要写在对应的位置上;字母要写在对应的位置上;(3 3):要记住):要记住“有三个角对应相等有三个角对应相等”或或“有两边及有两边及其中一边的对角对应相等其中一边的对角对应相等”的两个三角形不一定全等;的两个三角形不一定全等;(4 4):时刻注意图形中的隐含条件,如):时刻注意图形中的隐含条件,如 “公共角公共角” 、“公共边公共边”、“对顶角对顶角”交流平台交流平台本节课你还有本节课你还有不不理解的地方吗理解的地方吗?

展开阅读全文
相关资源
相关搜索

当前位置:首页 > 教育专区 > 小学资料

本站为文档C TO C交易模式,本站只提供存储空间、用户上传的文档直接被用户下载,本站只是中间服务平台,本站所有文档下载所得的收益归上传人(含作者)所有。本站仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。若文档所含内容侵犯了您的版权或隐私,请立即通知淘文阁网,我们立即给予删除!客服QQ:136780468 微信:18945177775 电话:18904686070

工信部备案号:黑ICP备15003705号© 2020-2023 www.taowenge.com 淘文阁