人教版八年级数学下册19.2.1 第1课时《正比例函数的概念》PPT课件.ppt

上传人:侗****源 文档编号:2155223 上传时间:2019-12-17 格式:PPT 页数:26 大小:6.79MB
返回 下载 相关 举报
人教版八年级数学下册19.2.1 第1课时《正比例函数的概念》PPT课件.ppt_第1页
第1页 / 共26页
人教版八年级数学下册19.2.1 第1课时《正比例函数的概念》PPT课件.ppt_第2页
第2页 / 共26页
点击查看更多>>
资源描述

《人教版八年级数学下册19.2.1 第1课时《正比例函数的概念》PPT课件.ppt》由会员分享,可在线阅读,更多相关《人教版八年级数学下册19.2.1 第1课时《正比例函数的概念》PPT课件.ppt(26页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。

1、19.2.1 正比例函数,第十九章 一次函数,第1课时 正比例函数的概念,新课标人教版八年级数学下册,情境引入,1.理解正比例函数的概念;2.会求正比例函数的解析式,能利用正比例函数解决简单的实际问题.(重点、难点),导入新课,情景引入,如果设蛤蟆的数量为x,y分别表示蛤蟆嘴的数量,眼睛的数量,腿的数量,扑通声,你能列出相应的函数解析式吗?,y=x,y=2x,y=4x,y=x,讲授新课,问题1 下列问题中,变量之间的对应关系是函数关系吗?如果是,请写出函数解析式:(1)圆的周长l 随半径r的变化而变化(2)铁的密度为7.8g/cm3,铁块的质量m(单位:g)随它的体积V(单位:cm3)的变化而

2、变化,(3)每个练习本的厚度为0.5cm,一些练习本摞在一起的总厚度h(单位:cm)随练习本的本数n的变化而变化(4)冷冻一个0的物体,使它每分钟下降2,物体温度T(单位:)随冷冻时间t(单位:min)的变化而变化,(3)h=0.5n,(4)T=-2t,问题2 认真观察以上出现的四个函数解析式,分别说出哪些是函数、常量和自变量,这些函数解析式有什么共同点?,这些函数解析式都是常数与自变量的乘积的形式!,2,,r,l,7.8,V,m,h,T,t,0.5,-2,n,函数=常数自变量,知识要点,一般地,形如y=kx(k是常数,k0)的函数,叫做正比例函数,其中k叫做比例系数,思考,为什么强调k是常数

3、, k0呢?,y = k x (k0的常数),注: 正比例函数y=kx(k0)的结构特征 k0 x的次数是1,1.判断下列函数解析式是否是正比例函数?如果是,指出其比例系数是多少?,是,3,不是,是,,不是,是,,是,,试一试,2.回答下列问题:(1)若y=(m-1)x是正比例函数,m取值范围是 ;(2)当n 时,y=2xn是正比例函数;(3)当k 时,y=3x+k是正比例函数.,试一试,m1,=1,=0,函数解析式可转化为y=kx(k是常数,k 0)的形式.,即 m1, m=1,, m=-1.,解:函数 是正比例函数,, m-10, m2=1,,例1 已知函数 y=(m-1) 是正比例函数,

4、求m的值.,典例精析,变式训练,(1)若 是正比例函数,则m= ;,(2)若 是正比例函数,则m= ;,-2,-1,m-20, |m|-1=1,, m=-2.,m-10, m2-1=0,, m=-1.,解:(1)设正比例函数解析式是 y=kx,,把 x =-4, y =2 代入上式,得,2 = -4k,,(2)当 x=6 时, y = -3.,例2 若正比例函数的自变量x等于-4时,函数y的值等于2. (1)求正比例函数的解析式; (2)求当x=6时函数y的值.,做一做,已知y与x成正比例,当x等于3时,y等于-1.则当x=6时,y的值为 .,-2,问题3 2011年开始运营的京沪高速铁路全长

5、1318千米.设列车的平均速度为300千米每小时.考虑以下问题:(1)乘高铁,从始发站北京南站到终点站上海站,约需多少小时(保留一位小数)?(2)京沪高铁的行程y(单位:千米)与时间t(单位:时)之间有何数量关系?(3)从北京南站出发2.5小时后,是否已过了距始发站1100千米的南京南站?,(1)乘京沪高速列车,从始发站北京南站到终点站海虹桥站,约需要多少小时(结果保留小数点后一位)? 13183004.4(小时),(2)京沪高铁列车的行程y(单位:千米)与运行时间t(单位:时)之间有何数量关系? y=300t(0t4.4),(3)京沪高铁列车从北京南站出发2.5小时后,是否已经过了距始发站1

6、 100 千米的南京站?y=3002.5=750(千米), 这时列车尚未 到 达 距 始 发 站 1 100千米的南京站.,例3 已知某种小汽车的耗油量是每100km耗油15L所使用的汽油为5元/ L (1)写出汽车行驶途中所耗油费y(元)与行程 x(km)之间的函数关系式,并指出y是x的什么函数;(2)计算该汽车行驶220 km所需油费是多少?,即 .,解:,(1)y=515x100,,(2)当x=220,时,,答:该汽车行驶220 km所需油费是165元,.,y是x的正比例函数.,列式表示下列问题中y与x的函数关系,并指出哪些是正比例函数 (1)正方形的边长为xcm,周长为ycm. y=4

7、x 是正比例函数 (2)某人一年内的月平均收入为x元,他这年(12个月)的总收入为y元 y=12x 是正比例函数 (3)一个长方体的长为2cm,宽为1.5cm,高为xcm ,体积为ycm3. y=3x 是正比例函数,做一做,1.下列函数关系中,属于正比例函数关系的是( )A.圆的面积S与它的半径rB.行驶速度不变时,行驶路程s与时间tC.正方形的面积S与边长aD.工作总量(看作“1” )一定,工作效率w与工作时间t,当堂练习,B,2.下列说法正确的打“”,错误的打“”. (1)若y=kx,则y是x的正比例函数( ) (2)若y=2x2,则y是x的正比例函数( ) (3)若y=2(x-1)+2,

8、则y是x的正比例函数( ) (4)若y=(2+k2)x,则y是x的正比例函数( ),注意:(1)中k可能为0;(4)中2+k20,故y是x的正比例函数.,3.填空(1)如果y=(k-1)x,是y关于x的正比例函数,则k满足_.(2)如果y=kxk-1,是y关于x的正比例函数,则k=_.(3)如果y=3x+k-4,是y关于x的正比例函数,则k=_.,k1,2,4,(4)若 是关于x的正比例函数,m= .,-2,4.已知y-3与x成正比例,并且x=4时,y=7,求,y与x之间的函数关系式.,解:依题意,设y-3与x之间的函数关系式为y-3=kx,,x=4时,y=7,7-3=4k,解得k=1.,y-3=x,即y=x+3.,5.有一块10公顷的成熟麦田,用一台收割速度为0.5公顷每小时的小麦收割机来收割.(1)求收割的面积y(单位:公顷)与收割时间x(单位:时)之间的函数关系式;(2)求收割完这块麦田需用的时间.,解:(1)y=0.5x;(2)把y=10代入y=0.5x中,得10=0.5x.解得x=20,即收割完这块麦田需要20小时.,课堂小结,正比例函数的概念,形式:y=kx(k0),求正比例函数的解析式,利用正比例函数解决简单的实际问题,1.设,2.代,3.求,4.写,

展开阅读全文
相关资源
相关搜索

当前位置:首页 > 教育专区 > 初中资料

本站为文档C TO C交易模式,本站只提供存储空间、用户上传的文档直接被用户下载,本站只是中间服务平台,本站所有文档下载所得的收益归上传人(含作者)所有。本站仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。若文档所含内容侵犯了您的版权或隐私,请立即通知淘文阁网,我们立即给予删除!客服QQ:136780468 微信:18945177775 电话:18904686070

工信部备案号:黑ICP备15003705号© 2020-2023 www.taowenge.com 淘文阁