《数学建模优秀作品.pdf》由会员分享,可在线阅读,更多相关《数学建模优秀作品.pdf(40页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。
1、数数学学建建模模优优秀秀作作品品 The document was finally revised on 202120132013高教社杯全国大学生数学建模竞赛高教社杯全国大学生数学建模竞赛承承 诺诺 书书我们仔细阅读了全国大学生数学建模竞赛章程和全国大学生数学建模竞赛参赛规则(以下简称为“竞赛章程和参赛规则”,可从全国大学生数学建模竞赛网站下载)。我们完全明白,在竞赛开始后参赛队员不能以任何方式(包括电话、电子邮件、网上咨询等)与队外的任何人(包括指导教师)研究、讨论与赛题有关的问题。我们知道,抄袭别人的成果是违反竞赛章程和参赛规则的,如果引用别人的成果或其他公开的资料(包括网上查到的资料)
2、,必须按照规定的参考文献的表述方式在正文引用处和参考文献中明确列出。我们郑重承诺,严格遵守竞赛章程和参赛规则,以保证竞赛的公正、公平性。如有违反竞赛章程和参赛规则的行为,我们将受到严肃处理。我们授权全国大学生数学建模竞赛组委会,可将我们的论文以任何形式进行公开展示(包括进行网上公示,在书籍、期刊和其他媒体进行正式或非正式发表等)。我们参赛选择的题号是(从A/B/C/D中选择一项填写): A我们的参赛报名号为(如果赛区设置报名号的话): 01034所属学校(请填写完整的全名):参赛队员 (打印并签名) :1. 2. 3.指导教师或指导教师组负责人 (打印并签名):(论文纸质版与电子版中的以上信息
3、必须一致,只是电子版中无需签名。以上内容请仔细核对,提交后将不再允许做任何修改。如填写错误,论文可能被取消评奖资格。)日期:2013 年 9 月16 日赛区评阅编号(由赛区组委会评阅前进行编号):20132013高教社杯全国大学生数学建模竞赛高教社杯全国大学生数学建模竞赛编编 号号 专专 用用 页页赛区评阅编号(由赛区组委会评阅前进行编号):赛区评阅记录(可供赛区评阅时使用):评阅人评分备注全国统一编号(由赛区组委会送交全国前编号):全国评阅编号(由全国组委会评阅前进行编号):车道被占用对城市道路通行能力的影响摘要车道被占用是研究城市交通的一个重要领域。本题要求建立合理数学模型,成功解决某个道
4、路被堵后交通情况变化的整个过程,为相关部门解决实际问题提供理论依据。针对问题一,描述事故发生过程中实际交通能力的变化过程。我们根据视频的分析得出此段路为二级公路。按照二级路段的通行能力计算公式,在视频1 中采集所需的数据,通过 Excel 计算并绘制出图 5-2。实际通行能力呈周期性变化,且随着阻塞车辆的增加而降低,但达到一定程度后递减效果不再明显。针对问题二,分析所占不同道对该横断面交通能力影响差异。通过对附件3的分析,首先我们考虑的是不同道承担交通任务不同,进而导致需要换道的车辆数不同,换道会降低通行能力。通过流体力学理论验证了我们的设想。因此我们采用拟合的方式确定换道次数与实际交通能力的
5、关系,利用 Matlab拟合结果为:N 7.2510 x-66.762303仅一道和仅三道换道次数比为,所以仅三道比通行比仅一道通行实际交通能力强,由图 5-6也可验证此结论。针对问题三,确定排队长度与横断面实际交通能力、事故持续时间、路段上游车流量的关系。我们考虑到车流属于交通波,则有y T,综合路口和交通带来的车流以 60s 为一周期规律性变化,由此我们建立的交通波模型为:yt hks1 hk1t t1tBt12 hk1t t1其中h(k) f (q,N),用1dy/dt 0便可求出极值点,得到了ys hks1 hk12tB t1/ 4hk11,即车辆排队距离的表达式。并利用视频 1中的数
6、据进行检验,检验结果相对误差为%,在误差允许范围内,基本符合实际情况,可以推广使用。针对问题四,事故发生在距离上游路口 140m处,上游车流量为 1500pcu/h来确定经过多久车辆长度达到 140m。我们利用问题三的结论,把堵车距离作为已知量,堵车达到 140m的时间作为未知量。综合路口状况和交通灯。我们建立的模型为tshks1hk1tBt1/4hk1t1。通过分析视频 1,求出所22需数据,得出车辆排队距离为 140m 的时间为 5 分 51秒。本题综合了车辆变道的影响、路口状况的影响、交通灯变化规律的影响以及本段路的实况信息,建立了数学模型。考虑较为全面,可以给交通管理部门正确引导车辆行
7、驶、审批占道施工、设计道路渠化方案、设置路边停车位和设置非港湾式公交车站等提供理论依据。关键词:换道行为;流体力学;Matlab 拟合;交通波一 问题重述车道被占用是指因交通事故、路边停车、占道施工等因素,导致车道或道路横断面通行能力在单位时间内降低的现象。由于城市道路具有交通流密度大、连续性强等特点,一条车道被占用,也可能降低路段所有车道的通行能力,即使时间短,也可能引起车辆排队,出现交通阻塞。如处理不当,甚至出现区域性拥堵。车道被占用的情况种类繁多、复杂,正确估算车道被占用对城市道路通行能力的影响程度,将为交通管理部门正确引导车辆行驶、审批占道施工、设计道路渠化方案、设置路边停车位和设置非
8、港湾式公交车站等提供理论依据。视频 1(附件 1)和视频 2(附件 2)中的两个交通事故处于同一路段的同一横断面,且完全占用两条车道。请研究以下问题:(1)根据视频 1(附件 1),描述视频中交通事故发生至撤离期间,事故所处横断面实际通行能力的变化过程。(2)根据问题 1所得结论,结合视频 2(附件 2),分析说明同一横断面交通事故所占车道不同对该横断面实际通行能力影响的差异。(3)构建数学模型,分析视频 1(附件 1)中交通事故所影响的路段车辆排队长度与事故横断面实际通行能力、事故持续时间、路段上游车流量间的关系。(4)假如视频 1(附件 1)中的交通事故所处横断面距离上游路口变为140米,
9、路段下游方向需求不变,路段上游车流量为 1500pcu/h,事故发生时车辆初始排队长度为零,且事故持续不撤离。请估算,从事故发生开始,经过多长时间,车辆排队长度将到达上游路口。二 基本假设模型假设(1)附件 1、附近 2中视频所取时间具有代表性,能反映客观事实;(2)事故发生具有偶然性,车流阻塞过程不存在人为干预;(3)只考虑四轮及以上的机动车、电瓶车的交通流量;(4)事故发生只会占用两个相邻车道;N断面实际通行能力三 符号说明fifwfhvfdff各项修正系数车道宽度修正系数车道硬路肩宽度修正系数方向分布修正系数路测干扰修正系数临界车速自由流车速发生事故前车流密度平静点车流密度阻塞密度临界密
10、度事故持续时间最大排对长度时间最大排队距离上游车流量行驶车辆最小安全间距基本通行能力mjk1ks1kjkmt1tsysq0l0N最大四 问题的分析本题从道路发生交通事故占用车道入手,要求建立模型解决占用后对通行能力的影响,占用不同车道对通行能力的影响,以及估算事故发生后车辆排队长度与相关参数的关系,并能准确计算车辆排队长度达到最大的时间针对问题一,描述事故发生过程中,实际交通能力的变化过程。我们根据视频里的路面状况,首先确定公路的级别,进而确定所用的求解实际交通能力公式。求出任意时间段的交通能力,再建立实际交通能力与时间的关系,得到实际交通能力变化过程。针对问题二,分析所占不同道对该横断面交通
11、能力影响差异。通过对附件3 的分析,首先我们考虑的是不同道承担交通任务不同,进而导致同一横断面不同车道发生事故对该横断面实际通行能力存在差异,因为需要换道的车辆数不同,换道会降低交通能力。通过对实际交通能力对换道次数作图,得到仅一道和仅三道通行的差异。针对问题三,确定排队长度与横断面实际交通能力、事故持续时间、路段上油车流量的关系。我们考虑到车流属于交通波,应符合交通波模型,再综合路口和交通灯带来的车流规律性变化,求出了堵车距离的表达式。针对问题四,事故发生在距离上游路口 140m处,上游车流量为 1500pcu/h来确定经过多久车辆长度达到 140m。我们利用问题三的结论,把堵车距离作为已知
12、量,堵车达到 140m的时间作为未知量。综合路口状况和交通灯,我们建立的模型为交通波模型。通过分析附件一的视频,求出所需数据,从而得出结果。五 模型的建立与求解问题一本题要求通过对附件一的认真观察及分析事故所处横断面实际通行能力的变化。分析其作用是为了确定新建道路的等级,性质,主要技术指标和线形几何要求,确定现有道路系统或某一路段所存在的问题,针对问题提出改进方案和措施,为道路的改建和改善提供依据,作为交通枢纽的规划,设计及交通设施配置的依据,为制定交通组织,交通疏导,交通引导,交通量均衡,交通数量控制盒综合治理等交通系统管理方案提供依据,为制定交通管理,交通控制方案以及交通渠化,信号配时优化
13、方案设计及选择等提供依据。5.1.1 通行能力的计算首先,我们要知道什么是道路的实际通行能力,道路的通行能力是指在一定的时间段内和在通常的道路,交通,管制条件下,能合理的期望人和车辆通过道路某一断面或地点的最大交通数量。通行能力一共分为三类,基本通行能力,实际通行能力和设计通行能力。1.基本通行能力是指道路与交通处于理想情况下,每一条车道(或每一条道路)在单位时间内能够通过的最大交通量。作为理想的道路条件,主要是车道宽度应不小于 3.65 m , 路旁的侧向余宽不小于 1.75 m , 纵坡平缓并有开阔的视野、良好的平面线形和路面状况。 作为交通的理想条件, 主要是车辆组成单一的标准车型汽车,
14、 在一条车道上以相同的速度,连续不断的行驶,各车辆之间保持与车速相适应的最小车头间隔, 且无任何方向的干扰。在这样的情况下建立的车流计算模式所得出的最大交通量,即基本通行能力。基本通行能力与行驶车辆之间的最小安全间距公式如下:N最大360036001000V(辆/h)Vhtl0l0/3.6VV2l0 l反l制l安l车t l安l车(辆/h)3.6254l安一般取用 2m,t可取 1s,附着系数与轮胎花纹,路面粗糙度,平整度,表面适度,行车速度等因素有关,如表 5-1所示:表 5-1 纵向附着系数与车速的关系表10080605030V (km / h )值1202040对应表中的数据,对小车的安全
15、长度进行计算,小汽车车辆长度一般采用6m。本题就把l0取 6m。2.计算可能通行能力 N 是以基本通行能力为基础考虑到实际的道路和交通状况,确定其修正系数,再以此修正系数乘以前述的基本通行能力,即得实际道路、交通与一定环境条件下的可能通行能力1。 影响通行能力不同因素的修正系数为:1)道路条件影响通行能力的因素很多, 一般考虑影响大的因素, 其修正系数有: 车道宽度修正系数f1;侧向净空的修正系数f2;纵坡度修正系数f3;视距不足修正系数f5;沿途条件修正系数f6。2)交通条件的修正主要是指车辆的组成, 特别是混合交通情况下, 车辆类型众多, 大小不一, 占用道路面积不同,性能不同, 速度不同
16、, 相互干扰大, 严重地影响了道路的通行能力。 一般记交通条件修正系数为f6。于是,道路路段的可能通行能力为:N N最大 f1 f2 f(辆/h)6交通条件:是不同类型的车辆换算为同一车型。对于不同等级的公路又有不同的公式进行具体的计算,根据视频与下图进行匹配,可明显看出此题研究的公路应为二级公路,如图 5-1所示。图 5-1 我国公路分级标准图因此该题应应用二级公路所对应的公式及修正系数表。其中二级公路计算公式为:N N最大 fw fHV fd ff根据国标可知,fw 0.56, fHW 0.56, fd1.00, ff 0.85。如表 5-2、5-3、5-4所示:表 5-2 方向分布修正系
17、数表55/4560/40方向分布修正系数路肩宽度(m)车道宽度(m)修正系数路测干扰等级修正系数50/5065/3570/30表 5-3 车道宽度及路肩宽度修正系数表0表 5-4 路测干扰修正系数表未街道化区段少许街道化区段街道化区段设计通行能力是设计某一公路设施时,根据对交通运行质量的要求,即在一定服务水平要求下,公路设施所能通行的最大小时交通量。因此,设计通行能力与选取的服务水平级别有关。是道路规划、设计的依据。此题不涉及设计通行能力。5.1.2 视频 1 的解析通过对附件一的仔细观察,从发生事故开始采集数据,知道事故解除期间的一段时间内,不同车道通过的车辆大小不同,然而不同车的车型大小会
18、影响到车的通行能力。特别是混合交通情况下,车辆类型众多,大小不一,占用道路面积不同,性能不同,速度不同,相互干扰大,严重地影响了道路的通行能力。为了使不同车型的车辆换算为同一车型,一般根据所占道路面积和行车速度的比值进行换算,亦可用平均车头时距的比值进行换算2。因此,根据国家交通部规定车种换算系数可将不同型号车的大小统一化,如表 5-5所示:表 5-5 交通部规定车种换算系数表车辆种类换算系数载货汽车、大客车、重型载货汽车、拖拉机带挂车的载货汽车、大平板车小汽车、吉普车、摩托车、人力车(架子车)兽力车自行车根据表 5-5中所给的标准换算系数将附件的各种型号的车进行标准化,分别采集出某段时间内各
19、车道通过的小车数,对其进行数据整理,如表 5-6所示:时间(s)6862777473685667797566表 5-6 各道路车辆及时间间隔表一车道(辆)二车道(辆)三车道(辆)57612899915141012910912107845665401143434车辆总数(辆)2321202121202020232220通过表 5-6,可算出每小时通过的车辆总数,又因为车辆长度对于小汽车一般采用 6m,所以与单车道计算通行能力数值表(表 5-7)进行匹配,得到相应的速度,如表 5-8 所示:表 5-7 实际通行能力的综合表pcu/h960114013809601140132012009001380
20、7201200780120096011401560120010201380V(km/h)50402050402030602080308030504010305020表 5-8 单车道的计算通行能力数值表计算车速 v(Km/h)120取车长6cm取车长8cm取车长6cm计算值(辆/h)采用值(量/h)计算值(辆/h)采用值(量/h)计算值(辆/h)采用值(量4945005896006817008158008939005025005926007037008628509639505065006036007187008889009991000100806050401121110010621050959
21、950301231120011551150105010620125612501065105086485010Namx(pcu/h)833166653332833166653332499899973332133294998133294998833166651666499883313332N(pcu/h)20901672836209016728361254250883633441254334412542090167241812542090836857850695700565550/h)0经过以上表格中数据及其对这些数据的分析得到了在交通事故发生至撤离期间,事故所处横断面实际通行能力随时间的变化过程
22、,如图 5-2所示:s图 5-2 事故所处横断面实际通行能力变化图根据图 5-2事故所处横断面实际通行能力变化图,可以得出实际通行能力的变化过程具有明显的周期性,并且当实际通行能力达到一定的限制时,即实际交通能力比较好,然后交通能力由强变弱。同理,当实际交通能力比较差时,经过一段时间后又由弱变好。因此,实际交通能力的变化具有明显的周期性。而且通过观察视频可以看出,此周期与交通灯的变化周期近似相同。问题二5.2.1视频 2 的解析根据视频 2 进行数据的提取,数据的提取见本论文的附件 1所示。将提取的数据按照第一问的方法进行处理得到视频 2的综合表,做法与第一问相同,如表 5-9所示:pcu/h
23、表 5-9 实际通行能力的综合表V(km/h)Namx(pcu/h)2033332033331016662033332033338013333203333508333305000508333203333305000203333305000203333406666203333406666203333N(pcu/h)经过以上表格中数据及其对这些数据的分析得到了在交通事故发生至撤离期间,事故所处横断面实际通行能力随时间的变化过程,对其进行整理、分析,得到图 5-3所示:图 5-3 视频 2 的实际通行能力图5.2.2 通行能力差异性分析由附表 3 可知三个车道通行车辆比例,能画出三车道的通车比例图,
24、如图 5-4所示:图 5-4 车道通行车辆比例图表 5-10一三道换倒数综合表仅通一道换道数m1仅通三道换道数m2换道数之比(m1/m2)一道 21%042%二道 44%44%44%三道 35%70%0合计114%86%由于附件一附件二的差异就在事故发生后没有受影响的道路不同,而道路的直接差别就在于所承担的车辆比例不同。所以我们得到车辆换道对通行能力有影响的初步设想。为了证明我们想法的正确性,查阅参考文献,其中流体力学的研究方法可得出相同的结论。流体力学的研究方法可得出考虑换道的车道交通流动力学模型为:k/tq/xsq uwuuuuq(u1u)(uwut)s0 xkk x ktx( 1 )式中
25、:u为速度;k为密度;t为时间;x为位置;q为车道流量,q ku;为波速;u1为最大波速;uws drdx,其中r为换道流量。当车辆离开车道时,r 0,s 0;车辆进入车道时,r 0,s 0;无车辆进出时,r 0,s 0。采用特征线分析法得到了此公式的解析式。其中,流量、密度和换道率之间的关系为u1mk 1mk1eu mk 1m k e1f 14mufkjek2mufk kejkfe k k,0 1kfe k ke,1 0ke k 0.5kfe,1 00.5kfe k kfc,1 0kj(2)式中:u1为自由流速度,是道路的设计时速;密度;m为波速系数;为以自由流速度行驶时的最大从式中可知,对
26、某一车道的交流而言,车辆换入只会增加高速度低密度区的通过量,对通行能力没有影响;而车辆换出会降低车道的通行能力,对一条封闭的告诉公路基本路段而言,每次换道都是从一个车道换出,而进入另一车道的通行能力无影响,因此,基本路段内车辆的换道(包括换出和换入的全过程)只会降低整个路段的通行能力,以式(2)为基本可得到整个路段平均每车道的换道率与通行能力之间的关系,从式(3)可知,换道频率的增加会降低道路的通行能力,算法为:C qmax1mufkje(3)4由该理论可充分证明换道频率的增加会降低道路的通行能力得想法是争取的,进而我们对数据进行采集,收集了视频一中的,相同时间内,换道的小车数量(附件 2),
27、并综合问题一的方法计算出其对应的实际通行能力,将二者用 matlab进行拟合(附件 3),得到的拟合图形如图 5-5所示:图 5-5 换道车数与通行能力的拟合图其所求得的拟合方程为:N 7.25106 x6.67 2303,N为实际交通能力,x为小车换道数量。综合问题,将两组数据进行对比,可以得到如图 5-6所示:图 5-6 两个视频通行能力的对比图明显看出,视频一中小汽车只从车道一通过时的通行能力明显小于视频二中小汽车只从车道一通过时的通行能力。通过附件三可知,只通过车道一的换道频率高于只通过车道三的换道频率。问题三5.3.1 问题分析根据题意,分析一种交通事故对路段车辆排队长度与事故横断面
28、实际交通能力,事故持续时间,路段上游车流量间的关系,通过对文献的查找分析,波动理论模型就是用来解决事故发生后车辆的排队问题,所以本题我们采用了波动理论模型解决。用波动理论表示排队长度随时间的变化,在此基础上建立交通事故所影响的路段车辆排队长度与事故横断面实际通行能力、事故持续时间、路段上游车流量之间的数学模型。交通流理论中将相邻两种状态的交通流之间的界面称为“交通波”,简称“波”。当事故发生后事故点的通行能力降低,如果上游的交通需求超过评定点的通行能力,将出现一个向后的返回波,当事故排除后将出现“启动波”,同时尾部又有后续车辆到达,即还有返回波,两者同时存在,且都在向后运动 。3图 5-7 事
29、故发生点交通波传播示意图5.3.2 模型的建立假设当交通事故发生后,本车道上游的需求流量下降为q1,对应的密度记为k1,瓶颈点的通行能力下降为s1,车流密度相应的上升为ks1,事故持续时间为t1,故障排除后,排队车辆以饱和流率s驶出,对应密度记为ks,一般异常时间持续时间的定义是指从交通异常产生到交通流状态恢复正常所需的时间。它由四个阶段构成,第一阶段是交通异常时间产生到 AID系统检测并确认事件;第二阶段是相应阶段,即从确认时间到救援车辆到达始事发现场;第三阶段是清除时间,即从救援车辆到达到离开现场;第四阶段是交通流恢复阶段,即从事件清除到排队完全消失,交通流恢复正常,事故持续时间是指前三个
30、阶段持续的总时间,也可称为事故清除时间4。事故发生后返回波的轨迹,波速为:s1q1 (4)ks1k1通过观测可确定流量和密度的关系模型,本文采用 GREENSHIELD 流密模型,如图 5-8所示,冰规定需求流量qi属于高速低密的畅流态,而s1属于低速高密的拥挤态。则ks1k1 uf1kj通过解三角形可得出tB,令hkdq,则dk图 5-8流密关系曲线图由上两式可得tBhks1t1hks1由于2ks1dqhks1k ks1 uf1dkkj因此tBkj2ks1t1k1ks1当0 t tB,yt t设kR表示任意一点的交通流密度,则该点的波速为:dyq q R1dtkRk1ufkjkjk1kR2k
31、Rt t1则:1又yR hkRt t1 ufkjufufk1dyy dt22t t1kj此方程可化为齐次微分方程,令T t t1则:dy1 yhk1dT2T设y T,可得任意一点的排队长度为:yThks1hk1TTB2hk1T1则ythks1hk1t t1tBt12hk1t t1 (5)由公式(4)到(5),根据实际通行能力、事故持续时间、路段上游车流量便可求得车辆排队长度yt。15.3.3 模型的检验模型是考虑实际情况,综合各种因素抽象出的一个方程,需要实际的检验才能应用到实际中去,因此做出检验。通过对视频一的分析,从事故发生到第一次达到排队车长度为 120m 用时为8 分 10 秒,将t
32、8.17min代入方程,并综合上游流量q01154pcu/h、2kdqhkk uf1dkkj求得最大排队长度为yt 0.1146km。对这一结果进行分析:计算值与实际值的差值:y y算- y实 0.1146-0.12 -0.0054km绝对误差为: y 0.0054km 5.4m相对误差:5.4100% 100% 4.5%y实120由于相对误差 4.5% 5%在可接受范围,由此可认为对问题三建立的模型较为可靠,可以用于实际问题的计算。问题四5.4.1 问题的分析此题所求车排队长度达到 140m 的时间与问题三中已知时间求解最大距离有对应关系。同样运用交通波模型,建立达到一定长度的时间与上游车流
33、密度、最大距离、横断面实际通行能力的关系。5.4.2 模型建立由于类似于模型三建立,所以具体步骤不在重复书写,模型结果为:ythks1hk1t t1tBt12hk1t t11将此公式对时间 t 求导:dydt 0排队达到给定距离的时间:tshks1hk1tBt1/4hk1t1225.4.3 模型的求解视频一中的交通事故所处横断面距离上游路口变为 140m,路段下游方向需求不变,路段上游车流量为 1500pcu/h,事故发生时,车辆初始排队长度为零,且事故持续不撤离从而计算出从事故发生开始,经过多长时间,车辆排队长度将到达上游路口。由问题三可知,要想求得事故发生开始直到车辆排队长度到达上游路口所
34、需的时间ts,就要找出事故发生前,此路段对应的车流量密度、阻塞密度、事故发生后车流密度、畅通流速。车流量密度k1 38pcu/km,阻塞密度kj81.9pcu/km,车流密度相应的上升为ks1 75pcu/km,畅通速度uf 60km/h。将数据代入公式(2)中求得 -22.78km/h,通过公式(3)可得出t1 0.316min,将tB代入公式(5)中,解出t1 0.1717min,又因为hks1 -49.89km/h,hk1 4.32km/h,又因为将此公式对时间 t 求导:dy 0dt可得最大排队长度和相应时刻如下:tshks1hk1tBt1/4hk1t122将以上数据代入到公式(12)
35、可得到车辆排队长度到达上游路口的相应时刻,ts5.85min。六 模型的推广及发展前景由于车道被占用(交通事故、路边停车、占道施工等因素)将可能导致车道或道路横断面通行能力在单位时间内降低的现象。并且城市道路具有交通流密度大、连续性强等特点,一条车道被占用,也可能降低路段所有车道的通行能力,即使时间段也可能引起车辆排队,出现交通阻塞。如出路不当甚至出现区域性拥堵。而且车道被占用的种类繁多复杂 。5因此正确估算车道被占用对城市道路通行能力的影响程度,将为交通管理部门正确引导车辆行驶、审批占道施工、设计道路渠化方案、设置路边停车位和设置非港湾式公交车站等提供理论依据。由此来保证道路的畅通阻止区域性
36、拥堵的现象。我们可以将交通波米模型进行推广,当工作人员通过视频中,看到某处有交通事故发生时可以利用此模型进行计算,从而推算出该交通事故发生的时间,排队长度等,采取指导疏通等有效的措施来阻止交通局部拥堵现象6。七 模型的优缺点模型一优点:所使用的数学方法简单易懂广泛应用,对数据的处理体现了合理性和可行性。所使用的 Excel软件是被广泛使用的,而且对于数据的处理,也是合理准确的。缺点:由于时间仓促,没有提取足够的数据进行分析。自行对数据进行提取,所以数据会存在误差,即使多次观察提取数据取平均值,也存在一定的误差(但误差在允许范围内)。模型二优点:使用流体力学理论验证了我们的猜想是正确的,保证了我
37、们的正确性。有通过 Matlab软件对采集的数据进行了拟合,得到了具体的影响方式。缺点:由于时间仓促,没有提取足够的数据进行分析。如果能有足够的数据,拟合的效果会更加的符合实际。模型三优点:通过对文献的查询可知,交通流模型广泛应用于交通中发生事故时存在的排队问题。建立了一个波函数,并用交通流实际参数替换了波函数中的参数,得到了一个可以准确反映出车辆排队长度与事故横断面实际交通能力、事故持续时间、路段上游车辆间的关系。并利用附件一中的数据进行检验,检验结果基本符合实际情况,可以推广使用。缺点:发生交通事故后,公路所在的道路网络的交通需求将会改变,交通流将重新分布,这是一个动态过程,它受信息发布的
38、形式,驾驶员的反应行为和控制策略等诸多因素的影响,十分复杂。因此本文仅考虑道路事故发生路段车道变换对实际通行能力的影响。模型四优点:在模型三的基础上进行了改进,从已知持续时间求车辆排队长度,转为已知车辆排队长度求出相应的时间。丰富了第三问的模型。缺点:由于大量数据需要从视频一中采集,带有一定的误差,与实际值有一定出入。八 模型的改进本文是针对道路路段通行能力所建立的模型,但实际生活中,平面交叉口也非常常见,由于本题给出的相关数据比较模糊,不足以用于建立平面交叉口通行能力的模型。如果想要更好的将上述模型进行推广加以使用,还应对交叉路口的信息数据进行采集。平交路口的通行能力不仅与交叉口所占面积、形
39、状、入口引道车行道的条数、宽度、几何线形等物理条件有关,而且受相交车流通过交叉口的运行方式、交通管理措施等方面的影响 。7以信号灯的影响为例。信号交叉口是由红、黄、绿三色信号类组成,用以指挥车辆的通行、停止和左右转弯,随信号灯的变换使车辆通行权由一个方向转移给另一个方向,根据信号周期长度及每个信号相位所占时间的长短,可以计算交叉口的通行能力。 大、中城市街道交通繁忙的平面交叉口一般都设置信号灯管制交通,因此,信号交叉口的通行能力与信号控制设计有密切关系 。8交叉口是两条以上道路相交的区域,车辆于此通过路口,转换方向,其运行路线必然相互交织或交叉,加上由色灯信号控制指挥车辆前进、停止或改变方向,
40、这就不可避免地要减速、制动、停车或起动、加速、转向,同时还由于红灯周期性定时性出现,所以必然要导致停车等候和时间损失 。 其次,是非机动车的干扰。9在路段上由分车带或隔离墩分隔,机动车与非机动车相互影响小。 而在交叉口范围内各种车辆混合行驶,转弯时互相穿插,特别是在自行车高峰时,机动车差不多处于非机动车的包围中,要实现方向转移是困难的。国内常用的计算方法是停车线断面法,即以进口处车道的停车线作为基础面,凡是通过该断面的车辆就被认为已通过交叉口。 交叉口的通行能力是指各相交道路进口处通行能力之和,每个进口处通行能力又分为直行、右转和左转三种情况,而每一个进口车道的用途又分专用和混用。 因此,进口
41、车道通行能力的计算公式不同,下面分别介绍 。101) 一条专用直行车道的通行能力N 3600 t1tsTztj式中:Tz为信号灯周期时间,tj为前后两车通过停车线的平均间隔时间,t1为每个周期内绿灯时间,ts为一个周期内的绿灯损失时间,包括起动、加速时间,a为平均加速速度 。112) 一条右转专用车道的通行能力原则上可按直行方法计算,将直行的通过时间换成右转的通过时间,一般采用下式:Ny 3600/ty(辆/h)式中:ty为前后两右转车辆连续驶过停车线断面的间隔时间。3) 一条左转专用车道的通行能力NL n3600/Tz(辆/ h)式中:n为在一个周期内允许左弯的车辆数。4) 直、左混合行驶时
42、一条车道的通行能力(Nzz)对于同一条车道上有直、左混行时,因去向各异相互干扰,甚至引起停车, 因此, 应乘以适当的折减系数 K。 同时,由于左转车通过时间往往大于直行车通过时间,一般约为直行车通过时间的 倍, 故应将左转车的所占比例乘以 倍,设 nz 为左转车辆所占百分率,则:3Nzz Nz1nzK(辆/h)45) 直、右混行一条车道的通行能力(Nzy)原理同上,但右转车所上时间一般为直行车的倍。 以ny表示右转车所占百分率,则:nyNzy Nz12K(辆/h)整个信号交叉口的通行能力为各个进口的直行、左转、右转各项通行能力之和。应用此模型能更加完善我们对道路交通能力的分析 。13参考文献1
43、 徐吉谦.交通工程总论M.北京:人民交通出版社.1996.2 涂辉招.城市道路交通评价方法研究及在 ERP 中的应用D.同济大学.3 周商吾.交通工程M.上海:同济大学出版社.1998.4 蒋璜,任福田,肖秋生等.交通流理论.北京.人民交通出版设.2005.5 郭冠英,邹智军.道路阻塞时的车辆排队长度计算法,中国公路学报,1998.6 严宝杰.道路通行能力分析M.北京:人民交通出版社,2003.7 周伟,王秉刚.路段通行能力的理论探讨J.交通运输工程报,2001.8 张文刚.定时信号控制交叉口通行能力解析研究D.上海:同济大学,2005.9 王芳.快速路基本路段通行能力调查与分析D.哈尔滨:哈
44、尔滨工业大学,2005.10 智库文档.百度文库.百度文库.维基百科.附件 1 视频二的各道路车辆数及时间间隔表时间(s)1245678910111213141516171819202122一车道(辆)二车道(辆)三车道(辆)4130030330011254334636115131071089938755951075810812710910981117111213157127999车辆总数(辆)56431105351535552103546959596955565854585957232425262728293031354544334766897810610910779981055505555
45、6552586150附件 2 采集的小车换道数据时间段16:39-16:4016:40-16:4116:41-16:4216:42-16:4316:43-16:4416:44-16:4516:45-16:4616:46-16:4716:47-16:4816:48-16:49视频一改道小车数改道大车数(辆)(辆)000710811917160004101110改道总数(辆)000151281311191616:49-16:5016:50-16:5116:51-16:5216:52-16:5316:53-16:5416:54-16:5516:55-16:5616:56-16:5716:57-16:
46、5816:58-16:5916:59:07-16:59:3116:59:43-17:00:0017:01:21-17:0217:02:00-17:02:1017:03:23-17:03:50时间段17:34-17:3517:35-17:3617:36-17:3717:37-17:3817:38-17:3917:39-17:4017:40-17:4117:41-17:4217:42-17:43698655712364511001000010001011161186559123847312视频二改道小车数改道大车数(辆)(辆)6015011091150111131110140改道总数(辆)6151
47、111151315111417:43-17:4417:44-17:4517:45-17:4617:46-17:4717:47-17:4817:48-17:4917:49-17:5017:50-17:5117:51-17:5217:52-17:5317:53-17:5417:54-17:5517:55-17:5617:56-17:5717:57-17:5817:58-17:5917:59-18:0018:00-18:0118:01-18:0218:02-18:0318:03-18:04附件 3 Matlab 拟合数据1311210612141312111111131091061010156000
48、2210010010223310111311214101414131411111313141316121210178小车换道数(个)6101111131314141414151517附件 4 自由流车速uj初始时间39:02:00终止时间39:23:00相应的实际通行能力(pcu/h)209020902090273025082090125428501254167216721672836时间(s)21速度(km/h)39:05:0039:31:0039:13:0039:35:0040:01:0040:17:0040:17:0040:39:0040:24:0040:49:0040:19:0040:
49、43:0041:13:0041:41:0040:11:0040:34:0040:07:0040:33:00自由流速度平均值附件 5 视频一上游流量计算时间段16:39-16:4016:40-16:4116:41-16:4216:42-16:4316:43-16:4416:44-16:4516:45-16:4616:46-16:4716:47-16:4816:48-16:49主干道到达车辆总数1118170131514112018262216222524282326uj38pcu/h小区路口到达小车数1102411232小区路口到达大车数000000000016:49-16:5016:50-16:5116:51-16:5216:52-16:5316:53-16:5416:54-16:5516:55-16:5616:56-16:5716:57-16:5816:58-16:5916:59:07-16:59:3116:59:43-17:00:0017:01:21-17:0217:02:00-17:02:1017:03:23-17:03:502021221420149200134688233222311243421000000100000000