《【课件一】2612二次函数y=ax2的图象.ppt》由会员分享,可在线阅读,更多相关《【课件一】2612二次函数y=ax2的图象.ppt(27页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。
1、第二十二章二次函数第二十二章二次函数22.1.222.1.2二次函数二次函数y yaxax2 2的图象的图象(第一课时)(第一课时)有的放矢有的放矢学习目标学习目标w1 1、会用描点法画二次函数会用描点法画二次函数y=xy=x2 2和和y=-xy=-x2 2的图象;的图象;w2 2、根据、根据函数函数y=xy=x2 2和和y=-xy=-x2 2的图象,的图象,直观地了解它的性质直观地了解它的性质. .你想直观地了解它的性质吗你想直观地了解它的性质吗? ?数形结合,直观感受在二次函数在二次函数y=y=x x2 2中中,y,y随随x x的变化而变化的规律的变化而变化的规律是什么?是什么? 有的放矢
2、有的放矢w观察观察y=y=x x2 2的表达式的表达式, ,选择适当选择适当x x值值, ,并计算相应并计算相应的的y y值值, ,完成下表:完成下表:w你会用描点法画二次函数y=y=x x2 2的图象吗的图象吗? ?xy=x x2 2x-3-2-10123y=x x2 2xy=x x2 29 94 41 10 01 14 49 9做一做做一做xy0 0-4-3-2-11234108642-21描点描点, ,连线连线y= =x2 2?y=x2的图象的图象观察图象,回答问题串w(1)(1)你能描述图象的形状吗你能描述图象的形状吗? ?与同伴进行交流与同伴进行交流. .w(2)图象是轴对称图形吗?
3、如果是,它的对称轴是什么?请你找出几对对称点,并与同伴交流.w(3)图象 与x轴有交点吗?如果有,交点坐标是什么?w(4)当x0呢?w(5)当x取什么值时,y的值最小?最小值是什么?你是如何知道的?xy0 0-4-3-2-11234108642-21y= =x2 22xy这条抛物线关于这条抛物线关于y轴对称轴对称,y轴就轴就 是它的对称轴是它的对称轴. 对称轴与抛物对称轴与抛物线的交点叫做线的交点叫做抛物线的顶点抛物线的顶点.二次函数二次函数y=x2的的图象形如物体抛射图象形如物体抛射时所经过的路线时所经过的路线,我我们把它叫做们把它叫做抛物线抛物线.2xy当当x0 (在对称轴的在对称轴的右侧
4、右侧)时时, y随着随着x的增大而的增大而增大增大. 当当x=-2时,时,y=4当当x=-1时,时,y=1当当x=1时,时,y=1当当x=2时,时,y=4抛物线抛物线y=x2在在x轴的轴的上方上方(除顶点外除顶点外),顶点顶点是它的最低点是它的最低点,开口开口向上向上,并且向上无限并且向上无限伸展伸展;当当x=0时时,函数函数y的值最小的值最小,最小值是最小值是0.在学中做在做中学w(1)二次函数二次函数y=-y=-x x2 2的图象是什么形状?的图象是什么形状? 做一做做一做你能根据表格中的数据作出猜想吗?w(2)(2)先想一想,然后作出它的图象先想一想,然后作出它的图象w(3)它与二次函数
5、它与二次函数y=x2的图象有什么关系?的图象有什么关系?xy=-x x2 2x-3-2-10123y=-x x2 2x -9-9-4-4-1-10 0-1-1-4-4-9-9做一做做一做xy0 0-4-3-2-11234-10-8-6-4-22-1描点描点, ,连线连线y=-=-x2 2?做一做做一做xy0 0-4-3-2-11234-10-8-6-4-22-1观察图象,回答问题串(1)1)你能描述图象的形状吗你能描述图象的形状吗? ?与同伴进行交流与同伴进行交流. .(2)图象 与x轴有交点吗?如果有,交点坐标是什么?(3)当x0呢?(4)当x取什么值时,y的值最小?最小值是什么?你是如何知
6、道的?(5)图象是轴对称图形吗?如果是,它的对称轴是什么?请你找出几对对称点,并与同伴交流.y=-=-x2 2描点描点, ,连线连线2xy这条抛物线关于这条抛物线关于y轴对称轴对称,y轴就轴就 是它的对称轴是它的对称轴. 对称轴与抛物对称轴与抛物线的交点叫做线的交点叫做抛物线的顶点抛物线的顶点.二次函数二次函数y= -x2的的图象形如物体抛射图象形如物体抛射时所经过的路线时所经过的路线,我我们把它叫做们把它叫做抛物线抛物线.y2xy 当当x0 (在对称轴在对称轴的右侧的右侧)时时, y随着随着x的增大而减小的增大而减小. y 当当x= -2时时,y= -4 当当x= -1时时,y= -1当当x
7、=1时时,y= -1当当x= 2时时,y= -4抛物线抛物线y= -x2在在x轴的轴的下方下方(除顶点外除顶点外),顶点顶点是它的最高点是它的最高点,开口开口向下向下,并且向下无限并且向下无限伸展伸展;当当x=0时时,函数函数y的值最大的值最大,最大值是最大值是0.看图说话看图说话w函数函数y=ay=ax x2 2(a0)(a0)的图象和性质的图象和性质: : 做一做做一做y=x2y=-x2xy0yx0?它们之间有何关系?2xy2xy 二次函数二次函数y=ax2的性质的性质.顶点坐标与对称轴顶点坐标与对称轴.位置与开口方向位置与开口方向.增减性与最值增减性与最值抛物线抛物线顶点坐标顶点坐标对称
8、轴对称轴位置位置开口方向开口方向增减性增减性最值最值y=x2y= -x2(0,0)(0,0)y轴轴y轴轴在在x轴的上方轴的上方(除顶点外除顶点外)在在x轴的下方轴的下方( 除顶点外除顶点外)向上向上向下向下当当x=0时时,最小值为最小值为0.当当x=0时时,最大值为最大值为0.在对称轴的左侧在对称轴的左侧,y随着随着x的增大而减小的增大而减小. 在对称轴的右侧在对称轴的右侧, y随着随着x的增大而增大的增大而增大. 在对称轴的左侧在对称轴的左侧,y随着随着x的增大而增大的增大而增大. 在对称轴的右侧在对称轴的右侧, y随着随着x的增大而减小的增大而减小. 根据图形填表:根据图形填表: 做一做做
9、一做y=y=x x2 2和和y=-y=-x x2 2是是y=ay=ax x2 2当当a=a=1 1时的时的特殊例子特殊例子.a.a的符号的符号确定着抛物线确定着抛物线的的x0y函数函数y=ay=ax x2 2(a0)(a0)的图象和性质的图象和性质: :在同一坐标系中作出函数在同一坐标系中作出函数y=y=x x2 2和和y=-y=-x x2 2的图象的图象看图说话看图说话y= =x2 2y=-=-x2 21.抛物线抛物线y=ax2的顶点是原点的顶点是原点,对称对称轴是轴是y轴轴.2.当当a0时,抛物线时,抛物线y=ax2在在x轴的上方轴的上方(除顶点外除顶点外),它的开它的开口向上口向上,并且
10、向上无限伸展;并且向上无限伸展; 当当a0时时,在对称轴的左侧在对称轴的左侧,y随着随着x的增大而减小;在对称轴的增大而减小;在对称轴右侧右侧,y随着随着x的增大而增大的增大而增大.当当x=0时函数时函数y的值最小的值最小.当当a0时,在对称轴的左侧时,在对称轴的左侧,y随着随着x的增大而增大;在对称轴的增大而增大;在对称轴的右侧的右侧,y随着随着x增大而减小增大而减小,当当x=0时时,函数函数y的值最大的值最大.二次函数y=ax2的性质2xy2xy 我思,我进步w1.已知抛物线已知抛物线y=ax2经过点经过点A(-2,-8). (1)求此抛物线的函数解析式;)求此抛物线的函数解析式; (2)
11、判断点)判断点B(-1,- 4)是否在此抛物线上)是否在此抛物线上. (3)求出此抛物线上纵坐标为)求出此抛物线上纵坐标为-6的点的坐标的点的坐标. 例题欣赏例题欣赏?w解(解(1)把()把(-2,-8)代入)代入y=ax2,得得 -8=a(-2)2,w解得解得a= -2,所求函数解析式为所求函数解析式为y= -2x2.(2)因为)因为 ,所以点所以点B(-1 ,-4)不在此抛物线上不在此抛物线上.2) 1(24(3)由)由-6=-2x2 ,得得x2=3, 所以纵坐标为所以纵坐标为-6的点有两个,它们分别是的点有两个,它们分别是 3x)6, 3()6, 3(与知道就做别客气例题欣赏例题欣赏w2
12、.2.填空填空:(1)抛物线抛物线y=2x2的顶点坐标是的顶点坐标是 ,对称轴是对称轴是 ,在在 侧侧,y随着随着x的增大而增大;在的增大而增大;在 侧侧,y随随着着x的增大而减小的增大而减小,当当x= 时时,函数函数y的值最小的值最小,最小值是最小值是 ,抛物线抛物线y=2x2在在x轴的轴的 方方(除顶点外除顶点外).w(2)抛物线抛物线 在在x轴的轴的 方方(除顶点外除顶点外),在对称轴的在对称轴的左侧左侧,y随着随着x的的 ;在对称轴的右侧;在对称轴的右侧,y随着随着x的的 ,当当x=0时时,函数函数y的值最大的值最大,最大值是最大值是 ,当当x 0时时,y0时时,抛物线抛物线y=ax2
13、在在x轴的上方(除顶点外)轴的上方(除顶点外),它的开口它的开口向上向上,并且向上无限伸展;并且向上无限伸展; 当当a0时时,在对称轴的左侧在对称轴的左侧,y随着随着x的增的增大而减小;大而减小;在对称轴右侧在对称轴右侧,y随着随着x的增大而增大的增大而增大.当当x=0时函数时函数y的值最小的值最小.当当a0 m+10 mm2 2+m=2 +m=2 解解得得:m:m1 1=2, m2, m2 2=1=1 由由得得:m:m1 1 m=1m=1 此时此时, ,二次函数为二次函数为: y=2x: y=2x2 2. .1 1、函数、函数y=4xy=4x2 2的图象的开口的图象的开口 , ,对称轴是对称
14、轴是 , ,顶顶点点是是 ; 2 2、函数、函数y=y=3x3x2 2的图象的开的图象的开口口 ,对称轴对称轴是是 ,顶点是顶点是_向上向上向下向下y轴轴y轴轴(0,0)(0,0)3、函数函数y= xy= x2 2的图象的开口的图象的开口 , ,对称轴是对称轴是 , ,顶点顶点是是 ; ; 4 4、函数、函数y= y= 0.2x0.2x2 2的图象的开口的图象的开口 , ,对称轴是对称轴是_, ,顶点是顶点是 ; ; 耐心填一填耐心填一填;3向上向上y轴轴(0,0)向下向下y轴轴(0,0) 观察函数观察函数y=x2的图象的图象,则下列判断中正确的则下列判断中正确的是是( )(A) 若若a,b互为相反数互为相反数,则则x=a与与x=b 的函数值相等的函数值相等;(B) 对于同一个自变量对于同一个自变量x,有两个函数有两个函数 值与它对应值与它对应.(C) 对任一个实数对任一个实数y,有两个有两个x和它对应和它对应.(D) 对任意实数对任意实数x,都有都有y0.xyoA结束寄语只有不断的思考只有不断的思考, ,才会才会有新的发现有新的发现; ;只有量的只有量的变化变化, ,才会有质的进步才会有质的进步. . 下课了!