《11.2与三角形有关的角(第1课时).ppt》由会员分享,可在线阅读,更多相关《11.2与三角形有关的角(第1课时).ppt(33页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。
1、第十一章 三角形,11.2与三角形有关的角第1课时,关注“初中教师园地”公众号2019秋季各科最新备课资料陆续推送中快快告诉你身边的小伙伴们吧,学习目标,2.会运用三角形内角和定理进行计算.(难点),1.会用平行线的性质与平角的定义证明三角形内 角和等于180.(重点),我的形状最小,那我的内角和最小.,我的形状最大,那我的内角和最大.,不对,我有一个钝角,所以我的内角和才是最大的.,一天,三类三角形通过对自身的特点,讲出了自己对三角形内角和的理解,请同学们作为小判官给它们评判一下吧.,导入新课,情境引入,我们在小学已经知道,任意一个三角形的内角和等于180.与三角形的形状、大小无关,所以它们
2、的说法都是错误的.,思考:除了度量以外,你还有什么办法可以验证三角形的内角和为180呢?,折叠,还可以用拼接的方法,你知道怎样操作吗?,锐角三角形,测量,480,720,600,6004807201800,(学生运用学科工具量角器测量演示),剪拼,(小组合作,讨论剪拼方法。各小组代表板演剪拼过程),三角形的三个内角拼到一起恰好构成一个平角.,观测的结果不一定可靠,还需要通过数学知识来说明.从上面的操作过程,你能发现证明的思路吗?,还有其他的拼接方法吗?,讲授新课,探究:在纸上任意画一个三角形,将它的内角剪下拼合在一起.,三角形的内角和定理的证明,验证结论,三角形三个内角的和等于180.,求证:
3、A+B+C=180.,已知:ABC.,证法1:过点A作lBC, B=1.(两直线平行,内错角相等) C=2.(两直线平行,内错角相等) 2+1+BAC=180,B+C+BAC=180.,1,2,证法2:延长BC到D,过点C作CEBA, A=1 .(两直线平行,内错角相等) B=2.(两直线平行,同位角相等)又1+2+ACB=180, A+B+ACB=180.,E,D,E,D,F,证法3:过D作DEAC,作DFAB. C=EDB,B=FDC.(两直线平行,同位角相等) A+AED=180,AED+EDF=180,(两直线平行,同旁内角相补) A=EDF.EDB+EDF+FDC=180, A+B+
4、C=180.,想一想:同学们还有其他的方法吗?,思考:多种方法证明三角形内角和等于180的核心是什么?,借助平行线的“移角”的功能,将三个角转化成一个平角.,试一试:同学们按照上图中的辅助线,给出证明步骤?,知识要点,在这里,为了证明的需要,在原来的图形上添画的线叫做辅助线.在平面几何里,辅助线通常画成虚线.,思路总结,为了证明三个角的和为180,转化为一个平角或同旁内角互补等,这种转化思想是数学中的常用方法.,作辅助线,例1 如图,在ABC中, BAC=40 , B=75 ,AD是ABC的角平分线,求ADB的度数.,解:由BAC=40 , AD是ABC的角平分线,得,BAD= BAC=20
5、.,在ABD中,ADB=180-B-BAD=180-75-20=85.,三角形的内角和定理的运用,【变式题】如图,CD是ACB的平分线,DEBC,A50,B70,求EDC,BDC的度数,解:A50,B70,ACB180AB60.CD是ACB的平分线,BCD ACB30.DEBC,EDCBCD30,在BDC中,BDC180BBCD=80.,例2 如图,ABC中,D在BC的延长线上,过D作DEAB于E,交AC于F.已知A30,FCD80,求D.,解:DEAB,FEA90在AEF中,FEA90,A30,AFE180FEAA60.又CFDAFE,CFD60.在CDF中,CFD60,FCD80,D180
6、CFDFCD40.,基本图形,由三角形的内角和定理易得A+B=C+D.,由三角形的内角和定理易得1+2=3+4.,总结归纳,例3 在ABC 中, A 的度数是B 的度数的3倍,C 比B 大15,求A,B,C的度数.,解: 设B为x,则A为(3x),C为(x 15), 从而有,3x x (x 15) 180.,解得 x 33.,所以 3x 99 , x 15 48.,答: A, B, C的度数分别为99, 33, 48.,几何问题借助方程来解. 这是一个重要的数学思想.,【变式题】在ABC中,A B ACB,CD是ABC的高,CE是ACB的平分线,求DCE的度数,解析:根据已知条件用A表示出B和
7、ACB,利用三角形的内角和求出A,再求出ACB,ACD,最后根据角平分线的定义求出ACE即可求得DCE的度数,比例关系可考虑用方程思想求角度.,解:A B ACB,设Ax,B2x,ACB3x.ABACB180,x2x3x180,得x30,A30,ACB90.CD是ABC的高,ADC90,ACD180903060.CE是ACB的平分线,ACE 9045,DCEACDACE604515.,在ABC中,A :B:C=1:2:3,则ABC是 _三角形 .,练一练:,在ABC中,A=35, B=43 ,则 C= .,在ABC中, A= B+10, C= A + 10, 则 A= , B= , C= .,
8、102,直角,60,50,70,例4 如图,C岛在A岛的北偏东50方向,B岛在A岛的北偏东80 方向,C岛在B岛的北偏西40 方向.从B岛看A,C两岛的视角ABC是多少度?从C岛看A、B两岛的视角ACB是多少度?,三角形的内角和定理也常常用在实际问题中.,解: CAB= BAD- CAD=80 -50=30.,由AD/BE,得BAD+ ABE=180 .,所以ABE=180 - BAD=180-80=100,ABC= ABE- EBC=100-40=60.,在ABC中,ACB=180 - ABC- CAB=180-60-30 =90,答:从B岛看A,C两岛的视角ABC是60 ,从C岛看A,B两
9、岛的视角ACB是90.,【变式题】如图,B岛在A岛的南偏西40方向,C岛在A岛的南偏东15方向,C岛在B岛的北偏东80方向,求从C岛看A,B两岛的视角ACB的度数.,解:如图,由题意得BEAD,BAD=40,CAD=15,EBC=80,EBA=BAD=40, BAC=40+15=55,CBA=EBC-EBA=80-40=40,ACB=180-BAC-ABC =180-55-40=85,D,E,当堂练习,1.求出下列各图中的x值,x=70,x=60,x=30,x=50,2.如图,则1+2+3+4=_ .,280 ,3.如图,四边形ABCD中,点E在BC上,A+ADE=180,B=78,C=60,
10、求EDC的度数,解:A+ADE=180,ABDE,CED=B=78又C=60,EDC=180-(CED+C)=180-(78+60)=42,4.如图,在ABC中,B=42,C=78,AD平分BAC求ADC的度数.,解:B=42,C=78,BAC=180-B-C=60.AD平分BAC,CAD= BAC=30,ADC=180-B-CAD=72.,5.如图,在ABC中,BP平分ABC,CP平分ACB,若BAC=60,求BPC的度数,解:ABC中,A=60,ABC+ACB=120BP平分ABC,CP平分ACB,PBC+PCB= (ABC+ACB)=60PBC+PCB+BPC=180,BPC=180-60=120,拓 展,【变式题】你能直接写出BPC与A 之间的数量关系吗?,解:BP平分ABC,CP平分ACB,PBC+PCB= (ABC+ACB)=60PBC+PCB+BPC=180,BPC=180- (ABC+ACB) =180- (180-A)=90+ A ,课堂小结,三角形的内角和定理,证明,了解添加辅助线的方法及其目的,内容,三角形内角和等于180 ,