《1912平行四边形的判定》第一课时.ppt

上传人:qwe****56 文档编号:20342293 上传时间:2022-06-15 格式:PPT 页数:26 大小:799.50KB
返回 下载 相关 举报
《1912平行四边形的判定》第一课时.ppt_第1页
第1页 / 共26页
《1912平行四边形的判定》第一课时.ppt_第2页
第2页 / 共26页
点击查看更多>>
资源描述

《《1912平行四边形的判定》第一课时.ppt》由会员分享,可在线阅读,更多相关《《1912平行四边形的判定》第一课时.ppt(26页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。

1、下面图片中,哪些是平行四边形?你是下面图片中,哪些是平行四边形?你是怎样判断的?怎样判断的?回顾旧知回顾旧知新课导入新课导入平行四边形的主要特征平行四边形的主要特征 1边:边: a平行四边形两组对边分别平行平行四边形两组对边分别平行 b平行四边形两组对边分别相等平行四边形两组对边分别相等2角:角:平行四边形两组对角分别相等平行四边形两组对角分别相等3对角线:对角线: 平行四边形对角线互相平分平行四边形对角线互相平分 . 怎样证明对边相等或对角怎样证明对边相等或对角线相等或对角线互相平分的四线相等或对角线互相平分的四边形是不是平行四边形?边形是不是平行四边形? 张师傅手中有一些木条,他想通过适当

2、的测量、张师傅手中有一些木条,他想通过适当的测量、割剪,钉制一个平行四边形框架,你能帮他想出割剪,钉制一个平行四边形框架,你能帮他想出一些办法来吗?并说明理由一些办法来吗?并说明理由ACBDABCDADBC探究探究证明:连接证明:连接AC AB=CD,AD=BC,ACACACD CAD(SSS) CABDCA ABCD 同理,同理,CADACB ADBC 四边形四边形ABCD为平行四边形为平行四边形上述问题可归结为:上述问题可归结为:已知:在四边形已知:在四边形ABCD中,中,AB=CD,AD=BC求证:四边形求证:四边形ABCD为平行四边形为平行四边形ACBD 将两根木条将两根木条AC,BD

3、的中点重叠,并用钉子固的中点重叠,并用钉子固定,再用一根橡皮筋绕端点定,再用一根橡皮筋绕端点A,B,C,D围成一个围成一个四边形四边形ABCD 想一想,想一想,AOB COD吗?四吗?四边形边形ABCD的对边之间有什么关系?你得到什么结的对边之间有什么关系?你得到什么结论?论? ACBOD探究探究AOB COD BACACDABCDCADACBADBC同理,同理,BOC AOD 四边形四边形ABCD是平行四边形是平行四边形结论结论:两条对角线互相平分的四边形是平行四边形两条对角线互相平分的四边形是平行四边形. .ACBOD平行四边形判定方法平行四边形判定方法1 1 两组对边分别相等的四边形是平

4、行四边形平行四边形判定方法平行四边形判定方法2 2 对角线互相平分的四边形是平行四边形知识要点知识要点证明:证明:四边形四边形ABCD是平行四边形,是平行四边形,ADBC,ABDC,DB E,F分别是边分别是边AB,CD的中点,的中点, BEDF ADF CBE AFCE 又又AECF 四边形四边形AECF是平行四边形是平行四边形AFEDCB【例例1】已知已知: ABCD中,中,E,F分别是边分别是边AB,CD的中点,求证的中点,求证:四边形四边形AECF是平行四边形是平行四边形DFECBAO 如下图,如下图, ABCD的对角线的对角线AC,BD相交于相交于O,EF过点过点O与与AD,BC分别

5、相交于点分别相交于点E,F连连接接EB,EC求证求证:四边形四边形AECF是平行四边形是平行四边形证明:证明:四边形四边形ABCD是平行四边形是平行四边形OAOC,ADBC, AEFCFE 又又AOECOF AOE COF OEOF 四边形四边形AECF是平行四边形是平行四边形.ODABCEF 四边形四边形ABCD是平行四边形是平行四边形 AO=CO,BO=DO AE=CF AOAE=COCF EO=FO 又又 BO=DO 四边形四边形BFDE是平行四边形是平行四边形证明:连接对角线证明:连接对角线BD,交,交AC于点于点O【例例2】已知:已知:E、F是平行四边形是平行四边形ABCD对角对角线

6、线AC上的两点,并且上的两点,并且AE=CF求证:四边形求证:四边形BFDE是平行四边形是平行四边形还有其他证明方法还有其他证明方法吗?吗?AE=CFEAD=FCBAD=BCDABCEF证明:证明:四边形四边形ABCD是平行四边形是平行四边形 AD BC且且AD =BC EAD=FCB 在在AED和和CFB中中AED CFB(SAS)DE=BF同理可证:同理可证:BE=DF四边形四边形BFDE是平行四边形是平行四边形已知:已知:E、F是平行四边形是平行四边形ABCD对角线对角线AC上的两点,当点上的两点,当点E,F满足什么条件时,四满足什么条件时,四边形边形BFDE是平行四边形?是平行四边形?

7、DABCEFO探究探究已知:四边形已知:四边形ABCD, A=C,B=D求证:四边形求证:四边形ABCD是平行四边形是平行四边形ABCD证明:证明:四边形四边形ABCD是平行四边形是平行四边形(两组对边分别两组对边分别平行的四边形是平行四边形平行的四边形是平行四边形)同理可证同理可证ABCD又又A+ B+ C+ D =360 2A+ 2B=360 A=C,B=D(已知)(已知)即即A+ B=180 ADBC (同旁内角互补,两直线平行)(同旁内角互补,两直线平行)两组对角分别相等的四边形是平行四边形平行四边形的判定定理平行四边形的判定定理4: :符号语言:符号语言:A=C,B=D,四边形四边形

8、ABCD是平行四边形是平行四边形知识要点知识要点ABCD已知:如图,在已知:如图,在 ABCD中,中,AE、CF分别是分别是 DAB、BCD的平分线的平分线求证:四边形求证:四边形AFCE是平行四边形是平行四边形提示:利用提示:利用“一组对边平行且相等的四边形平一组对边平行且相等的四边形平行四边形行四边形”ABCFDE证明:证明: 四边形四边形ABCD是平行四边形,是平行四边形, AB=CD,且,且ABCD BAE=DCF BEAC于于E,DFAC于于F, BEDF,且,且BEA=DFC=90 ABE CDF (AAS) BE=DF 四边形四边形BEDF是平行四边形(一组对边平行且是平行四边形

9、(一组对边平行且相等的四边形平行四边形)相等的四边形平行四边形) 平行四边形的判定方法从边来从边来判定两组对边分别平行的四边形是平行四边形两组对边分别平行的四边形是平行四边形两组对边分别相等的四边形是平行四边形两组对边分别相等的四边形是平行四边形一组对边平行且相等的四边形是平行四边形一组对边平行且相等的四边形是平行四边形从角来判定两组对角分别相等的四边形是平行四边形两组对角分别相等的四边形是平行四边形从对角线来判定两条对角线互相平分的四边形是平行四边形两条对角线互相平分的四边形是平行四边形课堂小结课堂小结1下列四边形哪些是平行四边形下列四边形哪些是平行四边形?为什么?为什么?ADCB11070

10、110ABCD1206055ABCDO5544BADC4.84.87.6随堂练习随堂练习2根据下列条件,不能判定一个四边形为平行根据下列条件,不能判定一个四边形为平行 四边形的是四边形的是( ) A两组对边分别相等两组对边分别相等 B两条对角线互相平分两条对角线互相平分 C两条对角线相等两条对角线相等 D两组对边分别平行两组对边分别平行C3如图四边形如图四边形ABCD中,中,AB/CD,只需添加,只需添加 一个条件,能使四边形一个条件,能使四边形ABCD是平行四边是平行四边 形,现有条件形,现有条件:AB=CD,BC=AD, AD/BC,ABC=ADC, 这些条件中,满足要求的有这些条件中,满

11、足要求的有( ) A1个个 B2个个 C3个个 D4个个ACBDC4在下列条件中,不能判定四边形是平行四边形在下列条件中,不能判定四边形是平行四边形 的是的是( ) AABCD,ADBC B AB=CD,AD=BC CABCD,AB=CD D ABCD,AD=BCDCBDOA5如图,在如图,在 ABCD中,对角线中,对角线AC,BD相交于点相交于点O,AC=10,BD=8,则,则AD长度的取值范围是长度的取值范围是 ( )AAD1 BAD10 D1AD9D6如图,点如图,点D、E、F分别是分别是ABC的边的边AB、 BC、CA的中点,以这些点为顶点,你能在的中点,以这些点为顶点,你能在 图中画出多少个平行四边形?图中画出多少个平行四边形?BAFEDC ADEF; BDFE; DECF . 3个个HGFEDCBA7(1)已知:平行四边形)已知:平行四边形ABCD中,中,E、F分别分别 是边是边AD、BC的中点;求证:的中点;求证:EBDF. (2)在()在(1)的图中,)的图中,AF交交BE于于G,CE交交 DF于于H;求证:;求证:EF与与GH相互平分相互平分.提示提示:(1)由由ABE CDF EBDF. (2)先证先证GEFH EHGF四边形四边形EGFH为平行四边形为平行四边形

展开阅读全文
相关资源
相关搜索

当前位置:首页 > 教育专区 > 小学资料

本站为文档C TO C交易模式,本站只提供存储空间、用户上传的文档直接被用户下载,本站只是中间服务平台,本站所有文档下载所得的收益归上传人(含作者)所有。本站仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。若文档所含内容侵犯了您的版权或隐私,请立即通知淘文阁网,我们立即给予删除!客服QQ:136780468 微信:18945177775 电话:18904686070

工信部备案号:黑ICP备15003705号© 2020-2023 www.taowenge.com 淘文阁