《溧阳市高中2018-2019学年上学期高三数学期末模拟试卷含答案(共15页).doc》由会员分享,可在线阅读,更多相关《溧阳市高中2018-2019学年上学期高三数学期末模拟试卷含答案(共15页).doc(15页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。
1、精选优质文档-倾情为你奉上溧阳市高中2018-2019学年上学期高三数学期末模拟试卷含答案班级_ 座号_ 姓名_ 分数_一、选择题1 已知三个数,成等比数列,其倒数重新排列后为递增的等比数列的前三项,则能使不等式成立的自然数的最大值为( )A9 B8 C.7 D52 某工厂产生的废气经过过虑后排放,过虑过程中废气的污染物数量(单位:毫克/升)与时间(单位:小时)间的关系为(,均为正常数)如果前5个小时消除了的污染物,为了消除的污染物,则需要( )小时.A. B.C. D. 【命题意图】本题考指数函数的简单应用,考查函数思想,方程思想的灵活运用,体现“数学是有用的”的新课标的这一重要思想. 3
2、设集合M=x|x1,P=x|x26x+9=0,则下列关系中正确的是( )AM=PBPMCMPDMP=R4 设等差数列an的前n项和为Sn,已知S4=2,S5=0,则S6=( )A0B1C2D35 已知f(x)为定义在(0,+)上的可导函数,且f(x)xf(x)恒成立,则不等式x2f()f(x)0的解集为( )A(0,1)B(1,2)C(1,+)D(2,+)6 已知集合,若,则( )A B C或 D或7 若P是以F1,F2为焦点的椭圆=1(ab0)上的一点,且=0,tanPF1F2=,则此椭圆的离心率为( )ABCD 8 已知函数y=x3+ax2+(a+6)x1有极大值和极小值,则a的取值范围是
3、( )A1a2B3a6Ca3或a6Da1或a29 设集合A=x|y=ln(x1),集合B=y|y=2x,则AB( )A(0,+)B(1,+)C(0,1)D(1,2)10设集合,则( )A. B. C. D. 【命题意图】本题考查集合的概念,集合的运算等基础知识,属送分题11已知2a=3b=m,ab0且a,ab,b成等差数列,则m=( )ABCD612已知,若,则( )ABCD【命题意图】本题考查平面向量的坐标运算、数量积与模等基础知识,意在考查转化思想、方程思想、逻辑思维能力与计算能力二、填空题13【南通中学2018届高三10月月考】定义在上的函数满足,为的导函数,且对恒成立,则的取值范围是_
4、.14数列 an中,a12,an1anc(c为常数),an的前10项和为S10200,则c_15已知函数,则 ,的值域为 【命题意图】本题考查分段函数的函数值与值域等基础知识,意在考查分类讨论的数学思想与运算求解能力.16设i是虚数单位,是复数z的共轭复数,若复数z=3i,则z=17已知x是400和1600的等差中项,则x=18设数列an的前n项和为Sn,已知数列Sn是首项和公比都是3的等比数列,则an的通项公式an=三、解答题19(本题满分12分)已知数列的前项和为,且,().(1)求数列的通项公式;(2)记,是数列的前项和,求.【命题意图】本题考查利用递推关系求通项公式、用错位相减法求数列
5、的前项和.重点突出对运算及化归能力的考查,属于中档难度.20衡阳市为增强市民的环境保护意识,面向全市征召义务宣传志愿者,现从符合条件的志愿者中随机抽取100名后按年龄分组:第1组,第2组,第3组,第4组,第5组,得到的频率分布直方图如图所示.(1)若从第3,4,5组中用分层抽样的方法抽取6名志愿者参加广场的宣传活动,则应从第3,4,5组各抽取多少名志愿者?(2)在(1)的条件下,该市决定在第3,4组的志愿者中随机抽取2名志愿者介绍宣传经验,求第4组至少有一名志愿者被抽中的概率. 21已知等差数列an,等比数列bn满足:a1=b1=1,a2=b2,2a3b3=1()求数列an,bn的通项公式;(
6、)记cn=anbn,求数列cn的前n项和Sn22已知函数f(x)=cosx(sinx+cosx)(1)若0,且sin=,求f()的值;(2)求函数f(x)的最小正周期及单调递增区间23(本小题满分12分)已知()当时,求的单调区间;()设,且有两个极值点,其中,求的最小值【命题意图】本题考查导数的应用等基础知识,意在考查转化与化归思想和综合分析问题、解决问题的能力24【常州市2018届高三上武进区高中数学期中】已知函数,若曲线在点处的切线经过点,求实数的值;若函数在区间上单调,求实数的取值范围;设,若对,使得成立,求整数的最小值溧阳市高中2018-2019学年上学期高三数学期末模拟试卷含答案(
7、参考答案)一、选择题1 【答案】C 【解析】试题分析:因为三个数等比数列,所以,倒数重新排列后恰好为递增的等比数列的前三项,为,公比为,数列是以为首项,为公比的等比数列,则不等式等价为,整理,得,故选C. 1考点:1、等比数列的性质;2、等比数列前项和公式.2 【答案】15 【解析】3 【答案】B【解析】解:P=x|x=3,M=x|x1;PM故选B4 【答案】D【解析】解:设等差数列an的公差为d,则S4=4a1+d=2,S5=5a1+d=0,联立解得,S6=6a1+d=3故选:D【点评】本题考查等差数列的求和公式,得出数列的首项和公差是解决问题的关键,属基础题5 【答案】C【解析】解:令F(
8、x)=,(x0),则F(x)=,f(x)xf(x),F(x)0,F(x)为定义域上的减函数,由不等式x2f()f(x)0,得:,x,x1,故选:C6 【答案】D【解析】试题分析:由,集合,又,或,故选D考点:交集及其运算7 【答案】A【解析】解:,即PF1F2是P为直角顶点的直角三角形RtPF1F2中,=,设PF2=t,则PF1=2t=2c,又根据椭圆的定义,得2a=PF1+PF2=3t此椭圆的离心率为e=故选A【点评】本题给出椭圆的一个焦点三角形为直角三角形,根据一个内角的正切值,求椭圆的离心率,着重考查了椭圆的基本概念和简单几何性质,属于基础题8 【答案】C【解析】解:由于f(x)=x3+
9、ax2+(a+6)x1,有f(x)=3x2+2ax+(a+6)若f(x)有极大值和极小值,则=4a212(a+6)0,从而有a6或a3,故选:C【点评】本题主要考查函数在某点取得极值的条件属基础题9 【答案】A【解析】解:集合A=x|y=ln(x1)=(1,+),集合B=y|y=2x=(0,+)则AB=(0,+)故选:A【点评】本题考查了集合的化简与运算问题,是基础题目10【答案】D【解析】由绝对值的定义及,得,则,所以,故选D.11【答案】C【解析】解:2a=3b=m,a=log2m,b=log3m,a,ab,b成等差数列,2ab=a+b,ab0,+=2,=logm2, =logm3,log
10、m2+logm3=logm6=2,解得m=故选 C【点评】本题考查了指数与对数的运算的应用及等差数列的性质应用12【答案】A【解析】二、填空题13【答案】【解析】点睛:函数的单调性是函数的重要性质之一,它的应用贯穿于整个高中数学的教学之中。某些数学问题从表面上看似乎与函数的单调性无关,但如果我们能挖掘其内在联系,抓住其本质,那么运用函数的单调性解题,能起到化难为易、化繁为简的作用。因此对函数的单调性进行全面、准确的认识,并掌握好使用的技巧和方法,这是非常必要的。根据题目的特点,构造一个适当的函数,利用它的单调性进行解题,是一种常用技巧。许多问题,如果运用这种思想去解决,往往能获得简洁明快的思路
11、,有着非凡的功效。14【答案】【解析】解析:由a12,an1anc,知数列an是以2为首项,公差为c的等差数列,由S10200得102c200,c4.答案:415【答案】,. 【解析】16【答案】10 【解析】解:由z=3i,得z=故答案为:10【点评】本题考查公式,考查了复数模的求法,是基础题17【答案】1000 【解析】解:x是400和1600的等差中项,x=1000故答案为:100018【答案】 【解析】解:数列Sn是首项和公比都是3的等比数列,Sn =3n故a1=s1=3,n2时,an=Sn sn1=3n3n1=23n1,故an=【点评】本题主要考查等比数列的通项公式,等比数列的前n项
12、和公式,数列的前n项的和Sn与第n项an的关系,属于中档题三、解答题19【答案】【解析】(1)当时,;1分当时,当时,整理得.3分数列是以3为首项,公比为3的等比数列.数列的通项公式为.5分20【答案】(1);(2) .【解析】111试题分析:(1)根据分层抽样方法按比例抽取即可;(2)列举出从名志愿者中抽取名志愿者有种情况,其中第组的名志愿者至少有一名志愿者被抽中的有种,进而根据古典概型概率公式可得结果. 1 (2)记第3组的3名志愿者为,第4组的2名志愿者为,则从5名志愿者中抽取2名志愿者有,共10种,其中第4组的2名志愿者至少有一名志愿者被抽中的有,共7种,所以第4组至少有一名志愿都被抽
13、中的概率为.考点:1、分层抽样的应用;2、古典概型概率公式.21【答案】 【解析】解:(I)设等差数列an的公差为d,等比数列bn的公比为q:a1=b1=1,a2=b2,2a3b3=11+d=q,2(1+2d)q2=1,解得或an=1,bn=1;或an=1+2(n1)=2n1,bn=3n1(II)当时,cn=anbn=1,Sn=n当时,cn=anbn=(2n1)3n1,Sn=1+33+532+(2n1)3n1,3Sn=3+332+(2n3)3n1+(2n1)3n,2Sn=1+2(3+32+3n1)(2n1)3n=1(2n1)3n=(22n)3n2,Sn=(n1)3n+1【点评】本题考查了等差数
14、列与等比数列的通项公式及其前n项和公式、“错位相减法”,考查了推理能力与计算能力,属于中档题22【答案】 【解析】解:(1)0,且sin=,cos=,f()=cos(sin+cos),=(+)=(2)f(x)=cosx(sinx+cosx)=sinxcosx+cos2x=sin2x+cos2x=sin(2x+),T=,由2k2x+2k+,kZ,得kxk+,kZ,f(x)的单调递增区间为k,k+,kZ23【答案】【解析】()的定义域,当时,令得,或;令得,故的递增区间是和;的递减区间是()由已知得,定义域为,令得,其两根为,且,24【答案】【解析】试题分析:(1)根据题意,对函数求导,由导数的几何意义分析可得曲线 在点处的切线方程,代入点,计算可得答案;(2)由函数的导数与函数单调性的关系,分函数在(上单调增与单调减两种情况讨论,综合即可得答案;(3)由题意得, 分析可得必有 ,对求导,对分类讨论即可得答案试题解析:,若函数在区间上单调递增,则在恒成立,得; 若函数在区间上单调递减,则在恒成立,得, 综上,实数的取值范围为;由题意得,即,由,当时,则不合题意;当时,由,得或(舍去),当时,单调递减,当时,单调递增,即,整理得, 设,单调递增,为偶数,又,故整数的最小值为。专心-专注-专业