朝阳区高中2018-2019学年上学期高三数学期末模拟试卷含答案(共17页).doc

上传人:飞****2 文档编号:19379280 上传时间:2022-06-06 格式:DOC 页数:17 大小:479.50KB
返回 下载 相关 举报
朝阳区高中2018-2019学年上学期高三数学期末模拟试卷含答案(共17页).doc_第1页
第1页 / 共17页
朝阳区高中2018-2019学年上学期高三数学期末模拟试卷含答案(共17页).doc_第2页
第2页 / 共17页
点击查看更多>>
资源描述

《朝阳区高中2018-2019学年上学期高三数学期末模拟试卷含答案(共17页).doc》由会员分享,可在线阅读,更多相关《朝阳区高中2018-2019学年上学期高三数学期末模拟试卷含答案(共17页).doc(17页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。

1、精选优质文档-倾情为你奉上朝阳区高中2018-2019学年上学期高三数学期末模拟试卷含答案班级_ 座号_ 姓名_ 分数_一、选择题1 已知函数,函数满足以下三点条件:定义域为;对任意,有;当时,.则函数在区间上零点的个数为( )A7 B6 C5 D4【命题意图】本题考查利用函数图象来解决零点问题,突出了对分段函数的转化及数形结合思想的考查,本题综合性强,难度大.2 设分别是中,所对边的边长,则直线与的位置关系是( )A平行 B 重合 C 垂直 D相交但不垂直3 如图F1、F2是椭圆C1: +y2=1与双曲线C2的公共焦点,A、B分别是C1、C2在第二、四象限的公共点,若四边形AF1BF2为矩形

2、,则C2的离心率是( )ABCD4 已知f(x),g(x)分别是定义在R上的偶函数和奇函数,且f(x)g(x)=x32x2,则f(2)+g(2)=( )A16B16C8D85 与463终边相同的角可以表示为(kZ)( )Ak360+463Bk360+103Ck360+257Dk3602576 下列说法中正确的是( )A三点确定一个平面B两条直线确定一个平面C两两相交的三条直线一定在同一平面内D过同一点的三条直线不一定在同一平面内7 已知i为虚数单位,则复数所对应的点在( )A第一象限B第二象限C第三象限D第四象限8 若集合A=x|2x1,B=x|0x2,则集合AB=( )Ax|1x1Bx|2x

3、1Cx|2x2Dx|0x19 在三棱柱中,已知平面,此三棱 柱各个顶点都在一个球面上,则球的体积为( ) A B C. D10一个椭圆的半焦距为2,离心率e=,则它的短轴长是( )A3BC2D611下列函数中,为奇函数的是( )Ay=x+1By=x2Cy=2xDy=x|x|12“x0”是“x0”是的( )A充分而不必要条件B必要而不充分条件C充分必要条件D既不充分也不必要条件二、填空题13在ABC中,若角A为锐角,且=(2,3),=(3,m),则实数m的取值范围是14函数f(x)=ax+4的图象恒过定点P,则P点坐标是15某班共30人,其中15人喜爱篮球运动,10人喜爱乒乓球运动,8人对这两项

4、运动都不喜爱,则喜爱篮球运动但不喜爱乒乓球运动的人数为16设复数z满足z(23i)=6+4i(i为虚数单位),则z的模为17将一个半径为3和两个半径为1的球完全装入底面边长为6的正四棱柱容器中,则正四棱柱容器的高的最小值为18已知x,y满足条件,则函数z=2x+y的最大值是三、解答题19已知函数f(x)=(ax2+x1)ex,其中e是自然对数的底数,aR()若a=0,求曲线f(x)在点(1,f(1)处的切线方程;()若,求f(x)的单调区间;()若a=1,函数f(x)的图象与函数的图象仅有1个公共点,求实数m的取值范围 20(本题满分15分)正项数列满足,(1)证明:对任意的,;(2)记数列的

5、前项和为,证明:对任意的,【命题意图】本题考查数列的递推公式与单调性,不等式性质等基础知识,意在考查推理论证能力,分析和解决问题的能力.21如图,在四棱锥PABCD中,底面ABCD为等腰梯形,ADBC,PA=AB=BC=CD=2,PD=2,PAPD,Q为PD的中点()证明:CQ平面PAB;()若平面PAD底面ABCD,求直线PD与平面AQC所成角的正弦值22(本小题满分13分)如图,已知椭圆的上、下顶点分别为,点在椭圆上,且异于点,直线与直线分别交于点,(1)设直线的斜率分别为,求证:为定值;(2)求线段的长的最小值;(3)当点运动时,以为直径的圆是否经过某定点?请证明你的结论【命题意图】本题

6、主要考查椭圆的标准方程及性质、直线与椭圆的位置关系,考查考生运算求解能力,分析问题与解决问题的能力,是中档题.23已知椭圆E: =1(ab0)的焦距为2,且该椭圆经过点()求椭圆E的方程;()经过点P(2,0)分别作斜率为k1,k2的两条直线,两直线分别与椭圆E交于M,N两点,当直线MN与y轴垂直时,求k1k2的值24如图所示,已知在四边形ABCD中,ADCD,AD=5,AB=7,BD=8,BCD=135(1)求BDA的大小(2)求BC的长朝阳区高中2018-2019学年上学期高三数学期末模拟试卷含答案(参考答案)一、选择题1 【答案】D第卷(共100分)Com2 【答案】C【解析】试题分析:

7、由直线与,则,所以两直线是垂直的,故选C. 1考点:两条直线的位置关系.3 【答案】 D【解析】解:设|AF1|=x,|AF2|=y,点A为椭圆C1: +y2=1上的点,2a=4,b=1,c=;|AF1|+|AF2|=2a=4,即x+y=4;又四边形AF1BF2为矩形,+=,即x2+y2=(2c)2=12,由得:,解得x=2,y=2+,设双曲线C2的实轴长为2m,焦距为2n,则2m=|AF2|AF1|=yx=2,2n=2c=2,双曲线C2的离心率e=故选D【点评】本题考查椭圆与双曲线的简单性质,求得|AF1|与|AF2|是关键,考查分析与运算能力,属于中档题4 【答案】B【解析】解:f(x),

8、g(x)分别是定义在R上的偶函数和奇函数,且f(x)g(x)=x32x2,f(2)g(2)=(2)32(2)2=16即f(2)+g(2)=f(2)g(2)=16故选:B【点评】本题考查函数的奇函数的性质函数值的求法,考查计算能力5 【答案】C【解析】解:与463终边相同的角可以表示为:k360463,(kZ)即:k360+257,(kZ)故选C【点评】本题考查终边相同的角,是基础题6 【答案】D【解析】解:对A,当三点共线时,平面不确定,故A错误;对B,当两条直线是异面直线时,不能确定一个平面;故B错误;对C,两两相交且不共点的三条直线确定一个平面,当三条直线两两相交且共点时,不一定在同一个平

9、面,如墙角的三条棱;故C错误;对D,由C可知D正确故选:D7 【答案】A【解析】解: =1+i,其对应的点为(1,1),故选:A8 【答案】D【解析】解:AB=x|2x1x|0x2=x|0x1故选D9 【答案】A【解析】 考点:组合体的结构特征;球的体积公式.【方法点晴】本题主要考查了球的组合体的结构特征、球的体积的计算,其中解答中涉及到三棱柱的线面位置关系、直三棱柱的结构特征、球的性质和球的体积公式等知识点的综合考查,着重考查了学生分析问题和解答问题的能力,以及推理与运算能力和学生的空间想象能力,试题有一定的难度,属于中档试题.10【答案】C【解析】解:椭圆的半焦距为2,离心率e=,c=2,

10、a=3,b=2b=2故选:C【点评】本题主要考查了椭圆的简单性质属基础题11【答案】D【解析】解:由于y=x+1为非奇非偶函数,故排除A;由于y=x2为偶函数,故排除B;由于y=2x为非奇非偶函数,故排除C;由于y=x|x|是奇函数,满足条件,故选:D【点评】本题主要考查函数的奇偶性的判断,属于基础题12【答案】B【解析】解:当x=1时,满足x0,但x0不成立当x0时,一定有x0成立,“x0”是“x0”是的必要不充分条件故选:B二、填空题13【答案】 【解析】解:由于角A为锐角,且不共线,6+3m0且2m9,解得m2且m实数m的取值范围是故答案为:【点评】本题考查平面向量的数量积运算,考查了向

11、量共线的条件,是基础题14【答案】(0,5) 【解析】解:y=ax的图象恒过定点(0,1),而f(x)=ax+4的图象是把y=ax的图象向上平移4个单位得到的,函数f(x)=ax+4的图象恒过定点P(0,5),故答案为:(0,5)【点评】本题考查指数函数的性质,考查了函数图象的平移变换,是基础题15【答案】12 【解析】解:设两者都喜欢的人数为x人,则只喜爱篮球的有(15x)人,只喜爱乒乓球的有(10x)人,由此可得(15x)+(10x)+x+8=30,解得x=3,所以15x=12,即所求人数为12人,故答案为:1216【答案】2 【解析】解:复数z满足z(23i)=6+4i(i为虚数单位),

12、z=,|z|=2,故答案为:2【点评】本题主要考查复数的模的定义,复数求模的方法,利用了两个复数商的模等于被除数的模除以除数的模,属于基础题17【答案】4+ 【解析】解:作出正四棱柱的对角面如图,底面边长为6,BC=,球O的半径为3,球O1 的半径为1,则,在RtOMO1中,OO1=4,=,正四棱柱容器的高的最小值为4+故答案为:4+【点评】本题考查球的体积和表面积,考查空间想象能力和思维能力,是中档题18【答案】4 【解析】解:由约束条件作出可行域如图,化目标函数z=2x+y为y=2x+z,由图可知,当直线y=2x+z过点A(2,0)时,直线y=2x+z在y轴上的截距最大,即z最大,此时z=

13、2(2)+0=4故答案为:4【点评】本题考查了简单的线性规划,考查了数形结合的解题思想方法,是中档题三、解答题19【答案】 【解析】解:()a=0,f(x)=(x1)ex,f(x)=ex+(x1)ex=xex,曲线f(x)在点(1,f(1)处的切线斜率为k=f(1)=e又f(1)=0,所求切线方程为y=e(x1),即exy4=0()f(x)=(2ax+1)ex+(ax2+x1)ex=ax2+(2a+1)xex=x(ax+2a+1)ex,若a=,f(x)=x2ex0,f(x)的单调递减区间为(,+),若a,当x或x0时,f(x)0;当x0时,f(x)0f(x)的单调递减区间为(,0,+);单调递

14、增区间为,0()当a=1时,由()知,f(x)=(x2+x1)ex在(,1)上单调递减,在1,0单调递增,在0,+)上单调递减,f(x)在x=1处取得极小值f(1)=,在x=0处取得极大值f(0)=1,由,得g(x)=2x2+2x当x1或x0时,g(x)0;当1x0时,g(x)0g(x)在(,1上单调递增,在1,0单调递减,在0,+)上单调递增故g(x)在x=1处取得极大值,在x=0处取得极小值g(0)=m,数f(x)与函数g(x)的图象仅有1个公共点,g(1)f(1)或g(0)f(0),即.【点评】本题考查了曲线的切线方程问题,考查函数的单调性、极值问题,考查导数的应用,是一道中档题20【答

15、案】(1)详见解析;(2)详见解析. 21【答案】 【解析】()证明:取PA的中点N,连接QN,BNQ,N是PD,PA的中点,QNAD,且QN=ADPA=2,PD=2,PAPD,AD=4,BC=AD又BCAD,QNBC,且QN=BC,四边形BCQN为平行四边形,BNCQ又BN平面PAB,且CQ平面PAB,CQ平面PAB()解:取AD的中点M,连接BM;取BM的中点O,连接BO、PO由()知PA=AM=PM=2,APM为等边三角形,POAM同理:BOAM平面PAD平面ABCD,平面PAD平面ABCD=AD,PO平面PAD,PO平面ABCD以O为坐标原点,分别以OB,OD,OP所在直线为x轴,y轴

16、,z轴建立空间直角坐标系,则D(0,3,0),A(0,1,0),P(0,0,),C(,2,0),Q(0,)=(,3,0),=(0,3,),=(0,)设平面AQC的法向量为=(x,y,z),令y=得=(3,5)cos,=直线PD与平面AQC所成角正弦值为22【答案】【解析】(1)易知,设,则由题设可知 , 直线AP的斜率,BP的斜率,又点P在椭圆上,所以,从而有.(4分) 23【答案】 【解析】解:()由题意得,2c=2, =1;解得,a2=4,b2=1;故椭圆E的方程为+y2=1;()由题意知,当k1=0时,M点的纵坐标为0,直线MN与y轴垂直,则点N的纵坐标为0,故k2=k1=0,这与k2k1矛盾当k10时,直线PM:y=k1(x+2);由得,(+4)y2=0;解得,yM=;M(,),同理N(,),由直线MN与y轴垂直,则=;(k2k1)(4k2k11)=0,k2k1=【点评】本题考查了椭圆方程的求法及椭圆与直线的位置关系的判断与应用,属于中档题24【答案】 【解析】(本题满分为12分)解:(1)在ABC中,AD=5,AB=7,BD=8,由余弦定理得=BDA=60(2)ADCD,BDC=30在ABC中,由正弦定理得, 专心-专注-专业

展开阅读全文
相关资源
相关搜索

当前位置:首页 > 教育专区 > 教案示例

本站为文档C TO C交易模式,本站只提供存储空间、用户上传的文档直接被用户下载,本站只是中间服务平台,本站所有文档下载所得的收益归上传人(含作者)所有。本站仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。若文档所含内容侵犯了您的版权或隐私,请立即通知淘文阁网,我们立即给予删除!客服QQ:136780468 微信:18945177775 电话:18904686070

工信部备案号:黑ICP备15003705号© 2020-2023 www.taowenge.com 淘文阁