《初一数学备课模板文档(共24页).doc》由会员分享,可在线阅读,更多相关《初一数学备课模板文档(共24页).doc(24页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。
1、精选优质文档-倾情为你奉上 科目数学年级7年级编写人蒋成文修订人教学内容1、1正数和负数(1)教材分析 引人负数是数的范围的一次重要扩充,学生头脑中关于数的结构要做重大调整(其实是一次知识的顺应过程),而负数相对于以前的数,对学生来说显得更抽象,因此,这个概念并不是一下就能建立的为了接受这个新的数,就必须对原有的数的结构进行整理,引人币的举例就是这个目的 负数的产生主要是因为原有的数不够用了(不能正确简洁地表示数量),书本的例子或图片中出现的负数就是让学生去感受和体验这一点使学生接受生活生产实际中确实存在着两种相反意义的量是本课的教学难点,所以在教学中可以多举几个这方面的例子,并且所举的例子又
2、应该符合学生的年龄和思维特点。当学生接受了这个事实后,引入负数(为了区分这两种相反意义的量)就是顺理成章的事了学情分析回顾小学里学过的数的类型,归纳出我们已经学了整数和分数,然后,举一些实际生活中共有相反意义的量,说明为了表示相反意义的量,我们需要引入负数,这样做强调了数学的严密性,但对于学生来说,更多地感到了数学的枯燥乏味为了既复习小学里学过的数,又能激发学生的学习兴趣,所以创设如下的问题情境,以尽量贴近学生的实际教学目标知识与技能整理前两个学段学过的整数、分数(包括小数)的知识,掌握正数和负数的概念过程与方法能区分两种不同意义的量,会用符号表示正数和负数;情感态度与价值观体验数学发展的一个
3、重要原因是生活实际的需要,激发学生学习数学的兴趣教学重点正确区分两种不同意义的量教学难点能区分两种不同意义的量,会用符号表示正数和负数;教学方法讲授法媒体设计师 生 活 动备注教学过程一、设置情境,引入课题:上课开始时,教师应通过具体的例子,简要说明在前两个学段我们已经学过的数,并由此请学生思考:生活中仅有这些“以前学过的数”够用了吗?下面的例子仅供参考 师:今天我们已经是七年级的学生了,我是你们的数学老师下面我先向你们做一下自我介绍,我的名字是XX,身高1.73米,体重58.5千克,今年40岁我们的班级是七(10)班,有60个同学,其中男同学有22个,占全班总人数的37%问题1:老师刚才的介
4、绍中出现了几个数?分别是什么?你能将这些数按以前学过的数的分类方法进行分类吗?学生活动:思考,交流 师:以前学过的数,实际上主要有两大类,分别是整数和分数(包括小数)问题2:在生活中,仅有整数和分数够用了吗?请同学们看书(观察本节前面的几幅图中用到了什么数,让学生感受引入负数的必要性)并思考讨论,然后进行交流。(也可以出示气象预报中的气温图,地图中表示地形高低地形图,工资卡中存取钱的记录页面等)学生交流后,教师归纳:以前学过的数已经不够用了,有时候需要一种前面带有“”的新数。二、分析问题,探究新知: 问题3:前面带有“一”号的新数我们应怎样命名它呢?为什么要引人负数呢?通常在日常生活中我们用正
5、数和负数分别表示怎样的量呢? 这些问题都必须要求学生理解 教师可以用多媒体出示这些问题,让学生带着这些问题看书自学,然后师生交流 这阶段主要是让学生学会正数和负数的表示强调:用正,负数表示实际问题中具有相反意义的量,而相反意义的量包含两个要素:一是它们的意义相反,如向东与向西,收人与支出;二是它们都是数量,而且是同类的量三、举一反三,思维拓展: 经过上面的讨论交流,学生对为什么要引人负数,对怎样用正数和负数表示两种相反意义的量有了初步的理解,教师可以要求学生举出实际生活中类似的例子,以加深对正数和负数概念的理解,并开拓思维 问题4:请同学们举出用正数和负数表示的例子 问题5:你是怎样理解“正整
6、数”“负整数,正分数”和“负分数”的呢?请举例说明四、课堂练习:教科书第页练习五、课堂小结 围绕下面两点,以师生共同交流的方式进行:1, 0由于实际问题中存在着相反意义的量,所以要引人负数,这样数的范围就扩大了; 2,正数就是以前学过的0以外的数(或在其前面加“”),负数就是在以前学过的0以外的数前面加“”。板书设计练习与思考 教科书第页习题1.1 第1,2,4,5(第3题作为下节课的思考题)。 能否举出例子是学生对知识掌握程度的体现,也能进一步帮助学生理解引负数的必要课后反思科目数学年级7年级编写人蒋成文修订人教学内容1、1正数和负数(2)教材分析1,本课主要目的是加深对正负数概念的理解和用
7、正负数表示实际生产生活中的向指定方向变化的量。2,“数0既不是正数,也不是负数,(要从0不属于两种相反意义的量中的任何一种上来理解)也应看作是负数定义的一部分在引人负数后,除了表示一个也没有以外,还是正数和负数的分界。了解0的这一层意义,也有助于对正负数的理解,且对数的顺利扩张和有理数概念的建立都有帮助由于上节课的重点是建立两种相反意义量的概念,考虑到学生的可接受性,所以作为知识的回顾和深化而放到本课学情分析1,教科书的例子是用正负数表示(向指定方向变化的)量的实际应用,用这种方式描述的例子很多,要尽量使学生理解 2,本设计体现了学生自主学习、交流讨论的教学理念,教学中要让学生体验数学知识在实
8、际中的合理应用,在体验中感悟和深化知识通过实际例子的学习激发学生学习数学的兴趣教学目标知识与技能通过对数“零”的意义的探讨,进一步理解正数和负数的概念;过程与方法利用正负数正确表示相反意义的量(规定了指定方向变化的量)进一步体验正负数在生产生活实际中的广泛应用情感态度与价值观提高解决实际问题的能力,激发学习数学的兴趣教学重点深化对正负数概念的理解教学难点正确理解和表示向指定方向变化的量教学方法讲授法媒体设计师 生 活 动备注教学过程一、知识回顾与深化:回顾:上一节课我们知道了在实际生产和生活中存在着两种不同意义的量,为了区分这两种量,我们用正数表示其中一种意义的量,那么另一种意义的量就用负数来
9、表示这就是说:数的范围扩大了(数有正数和负数之分)那么,有没有一种既不是正数又不是负数的数呢?问题1:有没有一种既不是正数又不是负数的数呢?学生思考并讨论(数0既不是正数又不是负数,是正数和负数的分界,是基准这个道理学生并不容易理解,可视学生的讨论情况作些启发和引导,下面的例子供参考)例如:在温度的表示中,零上温度和零下温度是两种不同意义的量,通常规定零上温度用正数来表示,零下温度用负数来表示。那么某一天某地的最高温度是零上7,最低温度是零下5时,就应该表示为7和5,这里7和5就分别称为正数和负数.那么当温度是零度时,我们应该怎样表示呢?(表示为0),它是正数还是负数呢?由于零度既不是零上温度
10、也不是零下温度,所以,0既不是正数也不是负数问题2:引入负数后,数按照“两种相反意义的量”来分,可以分成几类?二、分析问题,解决问题问题3:教科书第页例题说明:这是一个用正负数描述向指定方向变化情况的例子, 通常向指定方向变化用正数表示;向指定方向的相反方向变化用负数表示。这种描述在实际生活中有广泛的应用,应予以重视。教学中,应让学生体验“增长”和“减少”是两种相反意义的量,要求写出“体重的增长值”和“进出口额的增长率”,就暗示着用正数来表示增长的量。 归纳:在同一个问题中,分别用正数和负数表示的量具有相反的意义(教科书第页) 类似的例子很多,如: 水位上升3m,实际表示什么意思呢? 收人增加
11、10%,实际表示什么意思呢? 等等。可视教学中的实际情况进行补充三、 巩固练习 教科书第页练习以问题的形式,要求学生思考交流:四、 阅读思考 教科书第页,阅读与思考是正负数应用的很好例子,要花时间让学生讨论交五、 课堂小结 1,引人负数后,你是怎样认识数0的,数0的意义有哪些变化?2,怎样用正负数表示具有相反意义的量?板书设计练习与思考1, 必做题:教科书第页习题1.1第3,6,7,8题 2、选做题:教师自行安排课后反思科目数学年级7年级编写人蒋成文修订人教学内容1()有理数教材分析1,本课在引人了负数后对所学过的数按照一定的标准进行分类,提出了有理数的概念分类是数学中解决问题的常用手段,通过
12、本节课的学习使学生了解分类的思想并进行简单的分类是数学能力的体现,教师在教学中应引起足够的重视关于分类标准与分类结果的关系,分类标准的确定可向学生作适当的渗透,集合的概念比较抽象,学生真正接受需要很长的过程,本课不要过多展开。 ,两种分类方法,应以第一种方法为主,第二种方法可视学生的情况进行。学情分析本课具有开放性的特点,给学生提供了较大的思维空间,能促进学生积极主动地参加学习,亲自体验知识的形成过程,可避免直接进行分类所带来的枯燥性;同时还体现合作学习、交流、探究提高的特点,对学生分类能力的养成有很好的作用。教学目标知识与技能1, 掌握有理数的概念,会对有理数按照一定的标准进行分类,培养分类
13、能力;、了解分类的标准与分类结果的相关性,初步了解“集合”的含义;过程与方法教师给予引导和鼓励,划分数的类型要从文字所表示的意义上去引导,分类的标准要引导学生去体会,这样学生易于理解情感态度与价值观体验分类是数学上的常用处理问题的方法,培养分类能力,初步了解“集合”的含义教学重点正确理解分类的标准和按照一定的标准进行分类教学难点正确理解有理数的概念教学方法讲授法媒体设计师 生 活 动备注教学过程一、 探索新知在前两个学段,我们已经学习了很多不同类型的数,通过上两节课的学习,又知道了现在的数包括了负数,现在请同学们在草稿纸上任意写出3个数(同时请3个同学在黑板上写出) 问题1:观察黑板上的9个数
14、,并给它们进行分类 学生思考讨论和交流分类的情况学生可能只给出很粗略的分类,如只分为“正数”和“负数”或“零”三类,此时,教师应给予引导和鼓励例如,对于数5,可这样问:5和5. 1有相同的类型吗?5可以表示5个人,而5. 1可以表示人数吗?(不可以)所以它们是不同类型的数,数5是正数中整个的数,我们就称它为“正整数”,而5. 1不是整个的数,称为“正分数,(由于小数可化为分数,以后把小数和分数都称为分数) 通过教师的引导、鼓励和不断完善,以及学生自己的概括,最后归纳出我们已经学过的5类不同的数,它们分别是“正整数,零,负整数,正分数,负分数, 按照书本的说法,得出“整数”“分数”和“有理数”的
15、概念 看书了解有理数名称的由来“统称”是指“合起来总的名称”的意思试一试:按照以上的分类,你能作出一张有理数的分类表吗?你能说出以上有理数的分类是以什么为标准的吗?(是按照整数和分数来划分的)二、 练一练1,任意写出三个有理数,并说出是什么类型的数,与同伴进行交流2,教科书第页练习 此练习中出现了集合的概念,可向学生作如下的说明 把一些数放在一起,就组成了一个数的集合,简称“数集”,所有有理数组成的数集叫做有理数集类似地,所有整数组成的数集叫做整数集,所有负数组成的数集叫做负数集; 数集一般用圆圈或大括号表示,因为集合中的数是无限的,而本题中只填了所给的几个数,所以应该加上省略号思考:上面练习
16、中的四个集合合并在一起就是全体有理数的集合吗?三、 创新探究问题2:有理数可分为正数和负数两大类,对吗?为什么?教学时,要让学生总结已经学过的数,鼓励学生概括,通过交流和讨论,教师作适当的指导,逐步得到如下的分类表。负分数负整数正分数正整数正有理数负有理数零有理数四、 课堂小结到现在为止我们学过的数都是有理数(圆周率除外),有理数可以按不同的标准进行分类,标准不同,分类的结果也不同。板书设计练习与思考本课作业1, 必做题:教科书第页习题1.2第1题、选作题教师自行准备课后反思学生自己尝试分类时,可能会很粗略,教师给予引导和鼓励,划分数的类型要从文字所表示的意义上去引导,这样学生易于理解。有理数
17、的分类表要在黑板或媒体上展示,分类的标准要引导学生去体会科目数学年级7年级编写人蒋成文修订人教学内容1()数轴教材分析数轴是数形转化、结合的重要媒介,情境设计的原型来源于生活实际,学生易于体验和接受,让学生通过观察、思考和自己动手操作、经历和体验数轴的形成过程,加深对数轴概念的理解,同时培养学生的抽象和概括能力,也体出了从感性认识,到理性认识,到抽象概括的认识规律。学情分析、教学过程突出了情竟到抽象到概括的主线,教学方法体了特殊到一般,数形结合的数学思想方法。、注意从学生的知识经验出发,充分发挥学生的主体意识,让学生主动参与学习活,并引导学生在课堂上感悟知识的生成,发展与变化,培养学生自主探索
18、的学习方法。教学目标知识与技能1,掌握数轴的概念,理解数轴上的点和有理数的对应关系;2,会正确地画出数轴,会用数轴上的点表示给定的有理数,会根据数轴上的点读出所表示的有理数;过程与方法创设问题情境,激发学生的学习热情,发现生活中的数学教学中要以学生探究学习为主来完成,教师可结合教科书给学生适当指导情感态度与价值观感受在特定的条件下数与形是可以相互转化的,体验生活中的数学。点表示数的感性认识。体验数形结合思想;教学重点数轴的概念和用数轴上的点表示有理教学难点数轴的概念和用数轴上的点表示有理教学方法探究法媒体设计师 生 活 动备注教学过程一、 设置情境,引入课题教师通过实例、课件演示得到温度计读数
19、问题1:温度计是我们日常生活中用来测量温度的重要工具,你会读温度计吗?请你尝试读出图中三个温度计所表示的温度?(出示3幅图,三个温度分别为零上、零度和零下)问题2:在一条东西向的马路上,有一个汽车站,汽车站东3 m和7.5m处分别有一棵柳树和一棵杨树,汽车站西3 m和4.8m处分别有一棵槐树和一根电线杆,试画图表示这一情境(小组讨论,交流合作,动手操作)二、 合作交流,探究新知教师:由上述两问题我们得到什么启发?你能用一条直线上的点表示有理数吗?让学生在讨论的基础上动手操作,在操作的基础上归纳出:可以表示有理数的直线必须满足什么条件?从而得出数轴的三要素:原点、正方向、单位长度三、 从游戏中学
20、数学做游戏:教师准备一根绳子,请8个同学走上来,把位置调整为等距离,规定第4个同学为原点,由西向东为正方向,每个同学都有一个整数编号,请大家记住,现在请第一排的同学依次发出口令,口令为数字时,该数对应的同学要回答“到”;口令为该同学的名字时,该同学要报出他对应的“数字”,如果规定第3个同学为原点,游戏还能进行吗?四、 寻找规律,归纳结论问题3:你能举出一些在现实生活中用直线表示数的实际例子吗?如果给你一些数,你能相应地在数轴上找出它们的准确位置吗?如果给你数轴上的点,你能读出它所表示的数吗?哪些数在原点的左边,哪些数在原点的右边,由此你会发现什么规律?每个数到原点的距离是多少?由此你会发现了什
21、么规律?(小组讨论,交流归纳)归纳出一般结论,教科书第的归纳五、 巩固练习教科书第页练习六、 课堂小结请学生总结:1, 数轴的三个要素;数轴的作以及数与点的转化方法板书设计练习与思考1, 必做题:教科书第页习题1.2第2题2,选做题:教师自行安排课后反思科目数学年级7年级编写人蒋成文修订人教学内容1()相反数教材分析 1,相反数的概念使有理数的各个运算法则容易表述,也揭示了两个特殊数的特征这两个特殊数在数量上具有相同的绝对值,它们的和为零,在数轴上表示时,离开原点的距离相等等性质均有广泛的应用所以本教学设计围绕数量和几何意义展开,渗透数形结合的思想 2,教学引人以开放式的问题人手,培养学生的分
22、类和发散思维的能力;把数在数轴上表示出来并观察它们的特征,在复习数轴知识的同时,渗透了数形结合的数学方法,数与形的相互转化也能加深对相反数概念的理解;问题2能帮助学生准确把握相反数的概念;问题3实际上给出了求一个数的相反数的方法学情分析体验对称的图形的特点,为相反数在数轴上的特征做准备。深化相反数的概念;“零的相反数是零”是相反数定义的一部分。强化互为相反数的数在数轴上表示的点的几何意义教学目标知识与技能1, 掌握相反数的概念,进一步理解数轴上的点与数的对应关系;2, 通过归纳相反数在数轴上所表示的点的特征,培养归纳能力;过程与方法以开放的形式创设情境,以学生进行讨论,并培养分类的能力。学生在
23、教师的引导下进行自主学习,自主探究,观察归纳,重视学生的思维过程,并给学生留有发挥的余地情感态度与价值观培养学生的观察与归纳能力,渗透数形思想,体验数形结合的思想。教学重点归纳相反数在数轴上表示的点的特征教学难点相反数的概念教学方法开放式教学媒体设计师 生 活 动备注教学过程一、设置情境,引入课题问题1:请将下列4个数分成两类,并说出为什么要这样分类3, 2,5,2允许学生有不同的分法,只要能说出道理,都要难予鼓励,但教师要做适当的引导,逐渐得出5和5,2和2分别归类是具有较特征的分法。(引导学生观察与原点的距离)思考结论:教科书第1页的思考再换2个类似的数试一试。归纳结论:教科书第1页的归纳
24、。二、 深化主题,提炼定义给出相反数的定义问题2:你怎样理解相反数定义中的“只有符号不同”和“互为”一词的含义?零的相反数是什么?为什么?学生思考讨论交流,教师归纳总结。规律:一般地,数a的相反数可以表示为a思考:数轴上表示相反数的两个点和原点有什么关系?练一练:教科书第页第一个练习三、 给出规律,解决问题问题3:(5)和(5)分别表示什么意思?你能化简它们吗?学生交流。分别表示5和5的相反数是5和5练一练:教科书第页第二、三个练习 四、 课堂小结1, 相反数的定义2, 互为相反数的数在数轴上表示的点的特征怎样求一个数的相反数?怎样表示一个数的相反数?板书设计练习与思考1, 必做题 教科书第1
25、页习题1.2第3、题选做题 教师自行安排课后反思科目数学年级7年级编写人蒋成文修订人教学内容1()绝对值教材分析 1,情景的创设出于如下考虑:体现数学知识与生活实际的紧密联系,让学生在 这些熟悉的日常生活情境中获得数学体验,不仅加深对绝对值的理解,更感受到学 习绝对值概念的必要性和激发学习的兴趣教材中数的绝对值概念是根据几何意 义来定义的(其本质是将数转化为形来解释,是难点),然后通过练习归纳出求有理 数的绝对值的规律,本节课的内容包括绝对值的概念和数的绝对值的求法、有理数大小比较的法则,教学内容很多,学生接受起来可能会有困难,建议把有理数的大小比较移到下节课教学情分析一个数绝对值的法则,实际
26、上是绝对值概念的直接应用,也体现着分类的数学思想,所以直接通过例1归纳得出,显得非常紧凑,是教学重点;从知识的发展和学生的能力培养角度来看,教师应更重视学生的自主学习和探究的过程,关注学生的思维,做好教学的组织和引导,留给学生足够的空间。如果直接给出绝对值的概念,灌输知识的味道很浓,且太抽象,学生不易接受教学目标知识与技能1,掌握绝对值的概念,有理数大小比较法则2,学会绝对值的计算,会比较两个或多个有理数的大小过程与方法有理数大小的比较法则是大小规定的直接归纳,其中第(2)条学生较难理解,教学中要结合绝对值的意义和规定:“在数轴上表示有理数,它们从左到右的顺序就是从小到大的顺序”,帮助学生建立
27、“数轴上越左边的点到原点的距离越大,所以表示的数越小”这个数形结合的模型为此设置了想象练习情感态度与价值观体验数学的概念、法则来自于实际生活,渗透数形结合和分类思想教学重点两个负数大小的比较教学难点绝对值的概念教学方法媒体设计师 生 活 动备注教学过程一、 设置情境,引入课题星期天黄老师从学校出发,开车去游玩,她先向东行20千米,到朱家尖,下午她又向西行30千米,回到家中(学校、朱家尖、家在同一直线上),如果规定向东为正,用有理数表示黄老师两次所行的路程;如果汽车每公里耗油0.15升,计算这天汽车共耗油多少升?学生思考后,教师作如下说明:实际生活中有些问题只关注量的具体值,而与相反意义无关,即
28、正负性无关,如汽车的耗油量我们只关心汽车行驶的距离和汽油的价格,而与行驶的方向无关; 观察并思考:画一条数轴,原点表示学校,在数轴上画出表示朱家尖和黄老师家的点,观察图形,说出朱家尖黄老师家与学校的距离 学生回答后,教师说明如下: 数轴上表示数的点到原点的距离只与这个点离开原点的长度有关,而与它所表示的数的正负性无关; 一般地,数轴上表示数a的点与原点的距离叫做数a的绝对值,记做|a| 例如,上面的问题中|20|=20,|10|=10显然,|0|=0二、 合作交流、探究规律例1求下列各数的绝对值,并归纳求有理数a的绝对有什么规律?、 3,5,0,58,0.6 要求小组讨论,合作学习教师引导学生
29、利用绝对值的意义先求出答案,然后观察原数与它的绝对值这两个数据的特征,并结合相反数的意义,最后总结得出求绝对值法则(见教科书第1页) 巩固练习:教科书第1页练习其中第1题按法则直接写出答案,是求绝对值的基本训练;第2题是对相反数和绝对值概念进行辨别,对学生的分析、判断能力有较高要求,要注意思考的周密性,要让学生体会出不同说法之间的区别三、 结合实际发现新知引导学生看教科书第1页的图,并回答相关问题:把14个气温从低到高排列;把这14个数用数轴上的点表示出来;观察并思考:观察这些点在数轴上的位置,并思考它们与温度的高低之间的关系,由此你觉得两个有理数可以比较大小吗?应怎样比较两个数的大小呢?学生
30、交流后,教师总结:14个数从左到右的顺序就是温度从低到高的顺序:在数轴上表示有理数,它们从左到右的顺序就是从小到大的顺序,即左边的数小于右边的数在上面14个数中,选两个数比较,再选两个数试试,通过比较,归纳得出有理数大小比较法则想象练习:想象头脑中有一条数轴,其上有两个点,分别表示数一100和一90,体会这两个点到原点的距离(即它们的绝对值)以及这两个数的大小之间的关系要求学生在头脑中有清晰的图形四、 课堂练习例2,比较下列各数的大小(教科书第1页例)比较大小的过程要紧扣法则进行,注意书写格式练习:第1页练习五、课堂小结怎样求一个数的绝对值,怎样比较有理数的大小?板书设计练习与思考1, 必做题
31、:教产书第14页习题12,第4,5,6,102, 选做题:教师自行安排课后反思科目数学年级7年级编写人蒋成文修订人教学内容1.3.1 有理数的加法(一)教材分析 1,在本节课的设计中,注重引导学生参与探究、归纳(用自己的语言叙迷)有理数加法法则的过程 2,一方面主要是让学生感知研究数学问题的一般方法(分类、辩析、归纳、化归等)如在探究加法法则时,有意识地把各种情况先分为三类(同号、异号,一个数同0相加);在运用法则时,当和的符号确定以后,有理数的加法就转化为算术的加减法 3,注意学生合作学习的学习方式,让学生在与他人合作中受益,学会交流,学会倾听别人的意见和建议学情分析 估计学生能顺利地得到(
32、)(),()(一),(一)(),(一)十(),0(),0(一),但不能把它归的为同号异号等三类,所以此处需教师点拔、指扎,体现教师的引导者作用假设原点0为第一次运动起点,第二次运动的起点是第一次运动的终点若学生在学习小组内不能很好地参与探究,也可以让其参照教科书第21页的“探究”自主进行让学生感受“数学模型”的思想学会与同伴交流,并在交流中获益培养学生的语言表达能力和归纳能力,也许学生说得不够严谨,但这并不重要,重要的足能用自己的语言表达自己所发现的规律教学目标知识与技能1,在现实背景中理解有理数加法的意义2,经历探索有理数加法法则的过程,理解有理数的加法法则过程与方法1,能积极地参与探究有理
33、数加法法则的活动,并学会与他人交流合作2,能较为熟练地进行有理数的加法运算,并能解决简单的实际间题情感态度与价值观在教学中适当渗透分类讨论,思想让学生感受到在实际问题中做加法运算的数可能超出正数的范围,体会学习有理数加法的必要性,激发学生探究新知的兴趣教学重点异号两数相加教学难点和的符号的确定教学方法媒体设计师 生 活 动备注教学过程一、 设置情境,引入课题回顾用正负数表示数量的实际例子;在足球比赛中,如果把进球数记为正数,失球数记为负数,它们的和叫做净胜球数若红队进4个球,失2个球,则红队的胜球数,可以怎样表示?蓝队的胜球数呢? 师:如何进行类似的有理数的加法运算呢?这就是我们这节课一起与大
34、家探讨的问题(出示课题)二、 分析问题,探究新知如果是球队在某场比赛中上半场失了两个球,下半场失了3个球,那么它的得胜球是几个呢?算式应该怎么列?若这支球队上半场进了2个球,下半场失了3个球,又如何列出算式,求它的得胜球呢?(学生思考回答)思考:请同学们想想,这支球队在这场比赛中还可能出现其他的什么情况?你能列出算式吗?与同伴交流。学生相互交流后,教师进一步引导学生可以把两个有理数相加归纳为同号两数相加、异号两数相加、一个数同零相加这三种情况 2,借助数轴来讨论有理数的加法I 一个物体向左右方向运动,我们规定向左运动为负,向右为正,向右运动5m,记作5m,向左运动5m,记作5 m. (1)(小
35、组合作)把我们已经得出的几种有理数相加的情况在数轴上用运动的方向表示出来,并求出结果,解释它的意义 (2)交流汇报(对学习小组的汇报结果,数轴用实物投影仪展示,算式由教师写在黑板上)(3)说一说有理数相加应注意什么?(符号,绝对值)能用自己的语言归纳如何相加吗? (4)在学生归纳的基础上,教师出示有理数加法法则 有理数加法法则: 1,同号两数相加,取相同的符号,并把绝对值相加 2,绝对值不相等的异号两数相加,取绝对值较大的加数的符号,并用较大的绝对值减去较小的绝对值,互为相反数的两个数相加得03,一个数同。相加,仍得这个数三、解决问题 例1计算:(1)(3)(-9); (2)(5)13;(3)
36、0十(7); (4)(-4.7)3.9. 教师板演,让学生说出每一步运算所依据的法则请同学们比较,有理数的加法运算与小学时候学的加法有什么异同?(如:有理数加法计算中要注意符号,和不一定大于加数等等)例2足球循环赛中,红队4:1胜黄队,黄队1:0胜蓝队蓝队1:0胜红队,计算各队的净胜球数 (让学生读数,理解题意,思考解决方案,然后由学生口述,教师板书)学生活动:请学生说一说在生活中用到有理数加法的例子。四、 课堂练习教科书第18页练习1、2、3、4五、 课堂小结通过这节课的学习,你有哪些收获,学生自己总结。板书设计练习与思考必做题:阅读教科书第16-18页,教科书第24习题1.3第1、12、第
37、13题。注意点:(1)下先确定是哪种类型的加法再定符号,最后算绝对位(2)教教师板演的例通要完整体现过程,并要求学生在刚开始学的时候要把中间的过程写完整(3)体现化归思想(4)这里增加了两道题目,要是让学生能较为熟练地运用法则进行计算拓宽学生视野,让学生体会到数学与生活的密切联系。课后反思科目数学年级7年级编写人蒋成文修订人教学内容1.3.1 有理数的加法(二)教材分析“加法运算律对所有有理数都成立”目前只能直接给出,让学生举例尝试只起到验证的作用要让学生举不同的数验证,是为避免学生只由一个例子即得出某种结论鼓动学生用自己的语言表达所发现的贻论或规律让学生感受字母表示数的含义,同时也让学生体会
38、到数学符号语言的简洁性学情分析注重学习小组内的合作与交流,让每个学生都能从与同伴的交流中获益。鼓励学生在已有知识的基础上对结论做进一步探索,同时也为接下去的应用打下基础。强调算理,让学生在具体运算中体会运算律对简化运算的作用。通过例1的学习让学生明白:加法的交换律与结合律通常是结合起来使用的。此处与书本相对增加了一道题,主要是考虑到存在互为相反数的两数相加的简便性。也是培养学业生能力的需要。教学目标知识与技能1,经历有理数加法运算律的探索过程,理解有理数加法的运算律2,能用运算律简化有理数加法的运算过程与方法1、 使学生逐渐养成,“算必讲理”的习惯,培养学生初步的推理能力与表达能力2、 重视数
39、感的培养学生数感的养成不是一朝一夕能达成的,在教学中应充分挖掘学生能力的生长点情感态度与价值观注重学习小组内的合作与交流,让每个学生都能从与同伴的交流中获益。鼓励学生在已有知识的基础上对结论做进一步探索,同时也为接下去的应用打下基础。教学重点合理运用运算律教学难点加法交换律和结合律,及其合理、灵活的运用教学方法媒体设计师 生 活 动备注教学过程一、 设置情境,引入课题回顾复习:小学时已学过的加法运算律有哪几条?学生回答后教师接着问:你能用自己的语言或举例子来说明一下加法的交换律与结合律吗?提出问题:这些运算律在有理数加法中适用吗?这就是这节课我们要研究的课题二、 分析问题,探究新知探讨加法运算
40、律在有理数范围内是否适用 1,有理数加法交换律的学习 问题1:我们如何知道加法交换律在有理数范围内是否适用?(先由教师举一些实际例子来说明,然后鼓励学生举不同的数来验证) 问题2:我们如何用语言来叙述有理数加法的交换律呢?(这个问题请学生回答,并互相补充) 教师归纳后板书:“有理数加法中,两个数相加,交换加数的位置,和不变” 问题3 :你能把有理数加法的交换律用字母来表示吗?由学生回答得出a+b=b+a后,教师说明:1式子中的字母分别表示任意的一个有理数(如:既可成表示整数,也可以表示分数;既可以表示正数,也可以表示负数或0)。(2)在同一个式子中,同一个字母表示同一个数2,有理数加法结合律的
41、学习 (基本步骤同于加法交换律的学习)三、 讨论交流解决问题思考:如果四个或四个以上的有理数相加时,还能使用加法交换律与结合律吗?与同伴交流你的看法,并举例子来说明你的观点例1计算: (1)16+(25)十24(35); (2)(2.48)(4.33)(7.52)(4.33) 师生共同分析完成,如第(1)题,教师板书: 解:(1)原式=16+24+ (-25)十(-35)(此时教师问:依据是什么?) (16+24)(-25)(-35)(依据是什么?) =40(一60) =20解题后反思:先让学生按从左到右的顺序依次相加,算一算,再让学生说一说,通过这两道题目的计算,你有什么体会?(使用运算律能
42、使运算简便,简化运算的方法有:把正数和负数分别相加,有相反毅的先把相反数相加,能凑整的先凑整等等)例2教科书第24页例4. 这题可这样处理:I1,让学生估计一下总重量是超过标准重量还是不足标准重量2,让学生思考如何计算,学生能给教科书提供的解法1.即先10袋小麦的总质量,再计算总计超过多千克。此时可组织学生讨论:有没有不同的解法?(此时,如果已有学生提出教材的解法2的思路,则请学生讨论这种解法的合理性。并比较这两种解法。(这是一个有理数应用的例子,这两种解法都应让学生掌握,尤其是解法2更是体现学习有理数加法运算的必要性。四、 课堂练习教科书第20页练习五、 课堂小结强调算理,让学生在具体运算中
43、体会运算律对简化运算的作用。板书设计练习与思考必做题:第25页习题3.1第2、9、10阅读教科书第21页“实验与探究”有兴趣的可完成幻方。课后反思科目数学年级7年级编写人蒋成文修订人教学内容1.3.2 有理数的减法(-)教材分析除了考虑学生探索新知的需要,还考虑学生对法则的理解和掌握是建立在一定量的练习基础之上的,因此,在例题中增加了一道实际问题,让学生在解决实际间题过程中培养运算能力另外教师引导(提倡)学生进行解题后的反思,意在逐步培养学生思维的全面性、系统性在反思的基础上又让学生(或教师启发引导)去寻找一些(如减正数即加负数;减负数即加正数)规律,目的是让学生顺利地掌握法则,并达到熟练运用的程度。学情分析有理数减法时花了较多的时间,目的是让学生有充分的思考空间与时间进行探索,法则的得出,是在经历从实际例子(温度计上的温差)到抽象的过程中形成种,减法法则的归纳得出是本节课的难点,在这个过程中,设计了师生的交流对话,教师适时、适度的引导,也体现