《定日县第二中学校2018-2019学年高二上学期数学期末模拟试卷含解析(共15页).doc》由会员分享,可在线阅读,更多相关《定日县第二中学校2018-2019学年高二上学期数学期末模拟试卷含解析(共15页).doc(15页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。
1、精选优质文档-倾情为你奉上定日县第二中学校2018-2019学年高二上学期数学期末模拟试卷含解析班级_ 座号_ 姓名_ 分数_一、选择题1 在数列an中,a1=3,an+1an+2=2an+1+2an(nN+),则该数列的前2015项的和是( )A7049B7052C14098D141012 若函数则函数的零点个数为( )A1 B2 C3 D43 已知是虚数单位,若复数在复平面内对应的点在第四象限,则实数的值可以是( )A-2 B1 C2 D34 有以下四个命题:若=,则x=y若lgx有意义,则x0若x=y,则=若xy,则 x2y2则是真命题的序号为( )ABCD5 已知正项数列an的前n项和
2、为Sn,且2Sn=an+,则S2015的值是( )ABC2015D6 一个几何体的三视图如图所示,则该几何体的体积是( ) A64 B72 C80 D112【命题意图】本题考查三视图与空间几何体的体积等基础知识,意在考查空间想象能力与运算求解能力.7 已知圆过定点且圆心在抛物线上运动,若轴截圆所得的弦为,则弦长等于( )A2 B3 C4 D与点位置有关的值【命题意图】本题考查了抛物线的标准方程、圆的几何性质,对数形结合能力与逻辑推理运算能力要求较高,难度较大.8 “为真”是“为假”的( )条件A充分不必要 B必要不充分 C充要 D既不充分也不必要9 已知抛物线的焦点为,点是抛物线上的动点,则当
3、的值最小时,的面积为( )A. B.C. D. 【命题意图】本题考查抛物线的概念与几何性质,考查学生逻辑推理能力和基本运算能力.10在抛物线y2=2px(p0)上,横坐标为4的点到焦点的距离为5,则该抛物线的准线方程为( )Ax=1Bx=Cx=1Dx=11某公园有P,Q,R三只小船,P船最多可乘3人,Q船最多可乘2人,R船只能乘1人,现有3个大人和2个小孩打算同时分乘若干只小船,规定有小孩的船必须有大人,共有不同的乘船方法为( )A36种B18种C27种D24种12直线在平面外是指( )A直线与平面没有公共点B直线与平面相交C直线与平面平行D直线与平面最多只有一个公共点二、填空题13若与共线,
4、则y=14设集合A=x|x+m0,B=x|2x4,全集U=R,且(UA)B=,求实数m的取值范围为15在等差数列中,其前项和为,若,则的值等于 .【命题意图】本题考查等差数列的通项公式、前项和公式,对等差数列性质也有较高要求,属于中等难度.16直线ax2y+2=0与直线x+(a3)y+1=0平行,则实数a的值为 17命题:“xR,都有x31”的否定形式为18在棱长为1的正方体上,分别用过共顶点的三条棱中点的平面截该正方体,则截去8个三棱锥后,剩下的凸多面体的体积是三、解答题19已知函数()若曲线y=f(x)在点P(1,f(1)处的切线与直线y=x+2垂直,求函数y=f(x)的单调区间;()若对
5、于x(0,+)都有f(x)2(a1)成立,试求a的取值范围;()记g(x)=f(x)+xb(bR)当a=1时,函数g(x)在区间e1,e上有两个零点,求实数b的取值范围20已知函数f(x)=|x5|+|x3|()求函数f(x)的最小值m;()若正实数a,b足+=,求证: +m 21已知数列an的前n项和为Sn,a1=3,且2Sn=an+1+2n(1)求a2;(2)求数列an的通项公式an;(3)令bn=(2n1)(an1),求数列bn的前n项和Tn 22(本题满分15分)设点是椭圆上任意一点,过点作椭圆的切线,与椭圆交于,两点(1)求证:;(2)的面积是否为定值?若是,求出这个定值;若不是,请
6、说明理由【命题意图】本题考查椭圆的几何性质,直线与椭圆的位置关系等基础知识,意在考查解析几何的基本思想方法和综合解题能力23已知函数f(x)=2x24x+a,g(x)=logax(a0且a1)(1)若函数f(x)在1,3m上不具有单调性,求实数m的取值范围;(2)若f(1)=g(1)求实数a的值;设t1=f(x),t2=g(x),t3=2x,当x(0,1)时,试比较t1,t2,t3的大小 24已知命题p:x22x+a0在R上恒成立,命题q:若p或q为真,p且q为假,求实数a的取值范围定日县第二中学校2018-2019学年高二上学期数学期末模拟试卷含解析(参考答案)一、选择题1 【答案】B【解析
7、】解:an+1an+2=2an+1+2an(nN+),(an+12)(an2)=2,当n2时,(an2)(an12)=2,可得an+1=an1,因此数列an是周期为2的周期数列a1=3,3a2+2=2a2+23,解得a2=4,S2015=1007(3+4)+3=7052【点评】本题考查了数列的周期性,考查了计算能力,属于中档题2 【答案】D【解析】 考点:函数的零点【易错点睛】函数零点个数的判断方法:(1)直接求零点:令,如果能求出解,则有几个解就有几个零点(2)零点存在性定理法:要求函数在上是连续的曲线,且.还必须结合函数的图象和性质(如单调性)才能确定函数有多少个零点(3)图象法:先把所求
8、函数分解为两个简单函数,再画两个函数图象,看其交点的个数有几个,其中交点的横坐标有几个不同的值,就有几个不同的零点. 3 【答案】A【解析】试题分析:,对应点在第四象限,故,A选项正确.考点:复数运算4 【答案】A【解析】解:若=,则,则x=y,即对;若lgx有意义,则x0,即对;若x=y0,则=,若x=y0,则不成立,即错;若xy0,则 x2y2,即错故真命题的序号为故选:A5 【答案】D【解析】解:2Sn=an+,解得a1=1当n=2时,2(1+a2)=,化为=0,又a20,解得,同理可得猜想验证:2Sn=+=, =,因此满足2Sn=an+,Sn=S2015=故选:D【点评】本题考查了猜想
9、分析归纳得出数列的通项公式的方法、递推式的应用,考查了由特殊到一般的思想方法,考查了推理能力与计算能力,属于难题6 【答案】C.【解析】7 【答案】A【解析】过作垂直于轴于,设,则,在中,为圆的半径,为的一半,因此又点在抛物线上,.8 【答案】B【解析】试题分析:因为假真时,真,此时为真,所以,“ 真”不能得“为假”,而“为假”时为真,必有“ 真”,故选B. 考点:1、充分条件与必要条件;2、真值表的应用.9 【答案】B 【解析】设,则.又设,则,所以,当且仅当,即时,等号成立,此时点,的面积为,故选B.10【答案】C【解析】解:由题意可得抛物线y2=2px(p0)开口向右,焦点坐标(,0),
10、准线方程x=,由抛物线的定义可得抛物线上横坐标为4的点到准线的距离等于5,即4()=5,解之可得p=2故抛物线的准线方程为x=1故选:C【点评】本题考查抛物线的定义,关键是由抛物线的方程得出其焦点和准线,属基础题11【答案】 C【解析】排列、组合及简单计数问题【专题】计算题;分类讨论【分析】根据题意,分4种情况讨论,P船乘1个大人和2个小孩共3人,Q船乘1个大人,R船乘1个大1人,P船乘1个大人和1个小孩共2人,Q船乘1个大人和1个小孩,R船乘1个大1人,P船乘2个大人和1个小孩共3人,Q船乘1个大人和1个小孩,P船乘1个大人和2个小孩共3人,Q船乘2个大人,分别求出每种情况下的乘船方法,进而
11、由分类计数原理计算可得答案【解答】解:分4种情况讨论,P船乘1个大人和2个小孩共3人,Q船乘1个大人,R船乘1个大1人,有A33=6种情况,P船乘1个大人和1个小孩共2人,Q船乘1个大人和1个小孩,R船乘1个大1人,有A33A22=12种情况,P船乘2个大人和1个小孩共3人,Q船乘1个大人和1个小孩,有C322=6种情况,P船乘1个大人和2个小孩共3人,Q船乘2个大人,有C31=3种情况,则共有6+12+6+3=27种乘船方法,故选C【点评】本题考查排列、组合公式与分类计数原理的应用,关键是分析得出全部的可能情况与正确运用排列、组合公式12【答案】D【解析】解:根据直线在平面外是指:直线平行于
12、平面或直线与平面相交,直线在平面外,则直线与平面最多只有一个公共点故选D二、填空题13【答案】6 【解析】解:若与共线,则2y3(4)=0解得y=6故答案为:6【点评】本题考查的知识点是平面向量共线(平行)的坐标表示,其中根据“两个向量若平行,交叉相乘差为零”的原则,构造关于y的方程,是解答本题的关键14【答案】m2 【解析】解:集合A=x|x+m0=x|xm,全集U=R,所以CUA=x|xm,又B=x|2x4,且(UA)B=,所以有m2,所以m2故答案为m215【答案】16【答案】1【解析】【分析】利用两直线平行的条件,一次项系数之比相等,但不等于常数项之比,求得实数a的值【解答】解:直线a
13、x2y+2=0与直线x+(a3)y+1=0平行,解得 a=1故答案为 117【答案】x0R,都有x031 【解析】解:因为全称命题的否定是特称命题所以,命题:“xR,都有x31”的否定形式为:命题:“x0R,都有x031”故答案为:x0R,都有x031【点评】本题考查全称命题与特称命题的否定关系,基本知识的考查18【答案】 【解析】解:在棱长为1的正方体上,分别用过共顶点的三条棱中点的平面截该正方体,则截去8个三棱锥,8个三棱锥的体积为: =剩下的凸多面体的体积是1=故答案为:【点评】本题考查几何体的体积的求法,转化思想的应用,考查空间想象能力计算能力三、解答题19【答案】 【解析】解:()直
14、线y=x+2的斜率为1,函数f(x)的定义域为(0,+),因为,所以,所以,a=1所以, 由f(x)0解得x2;由f(x)0,解得 0x2所以f(x)的单调增区间是(2,+),单调减区间是(0,2) () ,由f(x)0解得; 由f(x)0解得所以,f(x)在区间上单调递增,在区间上单调递减所以,当时,函数f(x)取得最小值,因为对于x(0,+)都有f(x)2(a1)成立,所以,即可 则 由解得所以,a的取值范围是 () 依题得,则由g(x)0解得 x1; 由g(x)0解得 0x1所以函数g(x)在区间(0,1)为减函数,在区间(1,+)为增函数又因为函数g(x)在区间e1,e上有两个零点,所
15、以,解得 所以,b的取值范围是【点评】本题考查导数与曲线上某点的切线斜率的关系,利用导数求函数的单调区间以及函数的最值20【答案】 【解析】()解:f(x)=|x5|+|x3|x5+3x|=2,(2分)当且仅当x3,5时取最小值2,(3分)m=2(4分)()证明:( +)()2=3,(+)()2,+2(7分)【点评】本题主要考查绝对值不等式和均值不等式等基础知识,考查运算求解能力,考查化归与转化思想21【答案】 【解析】解:(1)当n=1时,2S1=2a1=a2+2,a2=41;(2)当n2时,2an=2sn2sn1=an+1+2nan2(n1)=an+1an+2,an+1=3an2,an+1
16、1=3(an1)4,an1从第二项起是公比为3的等比数列5,;(3)89得:,=,=(22n)3n4,1112【点评】本题考查等比数列的通项公式,数列的递推公式,考查“错位相减法”求数列的前n项和,考查计算能力,属于中档题22【答案】(1)详见解析;(2)详见解析.点为线段中点,;7分(2)若直线斜率不存在,则,与椭圆方程联立可得,故,9分若直线斜率存在,由(1)可得,11分点到直线的距离,13分,综上,的面积为定值15分23【答案】 【解析】解:(1)因为抛物线y=2x24x+a开口向上,对称轴为x=1,所以函数f(x)在(,1上单调递减,在1,+)上单调递增,因为函数f(x)在1,3m上不
17、单调,所以3m1,(2分)得,(3分)(2)因为f(1)=g(1),所以2+a=0,(4分)所以实数a的值为2因为t1=f(x)=x22x+1=(x1)2,t2=g(x)=log2x,t3=2x,所以当x(0,1)时,t1(0,1),(7分)t2(,0),(9分)t3(1,2),(11分)所以t2t1t3(12分)【点评】本题考查的知识点是二次函数的图象和性质,熟练掌握二次函数的图象和性质,是解答的关键24【答案】 【解析】解:若P是真命题则=44a0a1; (3分)若q为真命题,则方程x2+2ax+2a=0有实根,=4a24(2a)0,即,a1或a2,(6分)依题意得,当p真q假时,得a; (8分)当p假q真时,得a2(10分)综上所述:a的取值范围为a2(12分)【点评】本题考查复合函数的真假与构成其简单命题的真假的关系,解决此类问题应该先求出简单命题为真时参数的范围,属于基础题专心-专注-专业