江苏省扬州市中考数学试卷word版含解析.doc

上传人:知****量 文档编号:18866489 上传时间:2022-06-02 格式:DOC 页数:13 大小:226KB
返回 下载 相关 举报
江苏省扬州市中考数学试卷word版含解析.doc_第1页
第1页 / 共13页
江苏省扬州市中考数学试卷word版含解析.doc_第2页
第2页 / 共13页
点击查看更多>>
资源描述

《江苏省扬州市中考数学试卷word版含解析.doc》由会员分享,可在线阅读,更多相关《江苏省扬州市中考数学试卷word版含解析.doc(13页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。

1、江苏省扬州市2014年中考数学试卷参考答案与试题解析一、选择题(共8小题,每小题3分,满分24分)1(3分)(2014扬州)下列各数中,比2小的数是()A3B1C0D12(3分)(2014扬州)若3xy=3x2y,则内应填的单项式是()AxyB3xyCxD3x3(3分)(2014扬州)若反比例函数y=(k0)的图象经过点P(2,3),则该函数的图象的点是()A(3,2)B(1,6)C(1,6)D(1,6)4(3分)(2014扬州)若一组数据1,0,2,4,x的极差为7,则x的值是()A3B6C7D6或35(3分)(2014扬州)如图,圆与圆的位置关系没有()A相交B相切C内含D外离6(3分)(

2、2014扬州)如图,已知正方形的边长为1,若圆与正方形的四条边都相切,则阴影部分的面积与下列各数最接近的是()A0.1B0.2C0.3D0.47(3分)(2014扬州)如图,已知AOB=60,点P在边OA上,OP=12,点M,N在边OB上,PM=PN,若MN=2,则OM=()A3B4C5D68(3分)(2014扬州)如图,在四边形ABCD中,AB=AD=6,ABBC,ADCD,BAD=60,点M、N分别在AB、AD边上,若AM:MB=AN:ND=1:2,则tanMCN=()ABCD2二、填空题(共10小题,每小题3分,满分30分)9(3分)(2014扬州)据统计,参加今年扬州市初中毕业、升学统

3、一考试的学生约36800人,这个数据用科学记数法表示为3.6810410(3分)(2014扬州)若等腰三角形的两条边长分别为7cm和14cm,则它的周长为35cm11(3分)(2014扬州)如图,这是一个长方体的主视图和俯视图,由图示数据(单元:cm)可以得出该长方体的体积是18cm312(3分)(2014扬州)如图,某校根据学生上学方式的一次抽样调查结果,绘制出一个未完成的扇形统计图,若该校共有学生700人,则据此估计步行的有280人13(3分)(2014扬州)如图,若该图案是由8个全等的等腰梯形拼成的,则图中的1=67.514(3分)(2014扬州)如图,ABC的中位线DE=5cm,把AB

4、C沿DE折叠,使点A落在边BC上的点F处,若A、F两点间的距离是8cm,则ABC的面积为40cm315(3分)(2014扬州)如图,以ABC的边BC为直径的O分别交AB、AC于点D、E,连结OD、OE,若A=65,则DOE=5016(3分)(2014扬州)如图,抛物线y=ax2+bx+c(a0)的对称轴是过点(1,0)且平行于y轴的直线,若点P(4,0)在该抛物线上,则4a2b+c的值为017(3分)(2014扬州)已知a,b是方程x2x3=0的两个根,则代数式2a3+b2+3a211ab+5的值为2318(3分)(2014扬州)设a1,a2,a2014是从1,0,1这三个数中取值的一列数,若

5、a1+a2+a2014=69,(a1+1)2+(a2+1)2+(a2014+1)2=4001,则a1,a2,a2014中为0的个数是165三、解答题(共10小题,满分96分)19(8分)(2014扬州)(1)计算:(3.14)0+()22sin30;(2)化简:20(8分)(2014扬州)已知关于x的方程(k1)x2(k1)x+=0有两个相等的实数根,求k的值答:解:关于x的方程(k1)x2(k1)x+=0有两个相等的实数根,=0,(k1)24(k1)=0,整理得,k23k+2=0,即(k1)(k2)=0,解得:k=1(不符合一元二次方程定义,舍去)或k=2k=221(8分)(2014扬州)八

6、(2)班组织了一次经典朗读比赛,甲、乙两队各10人的比赛成绩如下表(10分制):甲789710109101010乙10879810109109(1)甲队成绩的中位数是9.5分,乙队成绩的众数是10分;(2)计算乙队的平均成绩和方差;(3)已知甲队成绩的方差是1.4分2,则成绩较为整齐的是乙队解答:解:(1)把甲队的成绩从小到大排列为:7,7,8,9,9,10,10,10,10,10,最中间两个数的平均数是(9+10)2=9.5(分),则中位数是9.5分;10出现了4次,出现的次数最多,则乙队成绩的众数是10分;故答案为:9.5,10;(2)乙队的平均成绩是:(104+82+7+93)=9,则方

7、差是:4(109)2+2(89)2+(79)2+3(99)2=1;(3)甲队成绩的方差是1.4,乙队成绩的方差是1,成绩较为整齐的是乙队;故答案为:乙22(8分)(2014扬州)商店只有雪碧、可乐、果汁、奶汁四种饮料,每种饮料数量充足,某同学去该店购买饮料,每种饮料被选中的可能性相同(1)若他去买一瓶饮料,则他买到奶汁的概率是;(2)若他两次去买饮料,每次买一瓶,且两次所买饮料品种不同,请用树状图或列表法求出他恰好买到雪碧和奶汁的概率解答:解:(1)商店只有雪碧、可乐、果汁、奶汁四种饮料,每种饮料数量充足,某同学去该店购买饮料,每种饮料被选中的可能性相同,他去买一瓶饮料,则他买到奶汁的概率是:

8、;故答案为:;(2)画树状图得:共有12种等可能的结果,他恰好买到雪碧和奶汁的有2种情况,他恰好买到雪碧和奶汁的概率为:=23(10分)(2014扬州)如图,已知RtABC中,ABC=90,先把ABC绕点B顺时针旋转90至DBE后,再把ABC沿射线平移至FEG,DF、FG相交于点H(1)判断线段DE、FG的位置关系,并说明理由;(2)连结CG,求证:四边形CBEG是正方形解答:(1)解:FGED理由如下:ABC绕点B顺时针旋转90至DBE后,DEB=ACB,把ABC沿射线平移至FEG,GFE=A,ABC=90,A+ACB=90,DEB+GFE=90,FHE=90,FGED;(2)证明:根据旋转

9、和平移可得GEF=90,CBE=90,CGEB,CB=BE,CGEB,BCG+CBE=90,BCG=90,四边形BCGE是矩形,CB=BE,四边形CBEG是正方形24(10分)(2014扬州)某漆器厂接到制作480件漆器的订单,为了尽快完成任务,该厂实际每天制作的件数比原来每天多50%,结果提前10天完成任务原来每天制作多少件?解答:解:设原来每天制作x件,根据题意得:=10,解得:x=16,经检验x=16是原方程的解,答:原来每天制作16件25(10分)(2014扬州)如图,O与RtABC的斜边AB相切于点D,与直角边AC相交于E、F两点,连结DE,已知B=30,O的半径为12,弧DE的长度

10、为4(1)求证:DEBC;(2)若AF=CE,求线段BC的长度解答:解:(1)证明:连接OD、OE,OD是O的切线,ODAB,ODA=90,又弧DE的长度为4,n=60,ODE是等边三角形,ODE=60,EDA=30,B=EDA,DEBC(2)连接FD,DEBC,DEF=90,FD是0的直径,由(1)得:EFD=30,FD=24,EF=,又因为EDA=30,DE=12,AE=,又AF=CE,AE=CF,CA=AE+EF+CF=20,又,BC=6026(10分)(2014扬州)对x,y定义一种新运算T,规定:T(x,y)=(其中a、b均为非零常数),这里等式右边是通常的四则运算,例如:T(0,1

11、)=b(1)已知T(1,1)=2,T(4,2)=1求a,b的值;若关于m的不等式组恰好有3个整数解,求实数p的取值范围;(2)若T(x,y)=T(y,x)对任意实数x,y都成立(这里T(x,y)和T(y,x)均有意义),则a,b应满足怎样的关系式?解答:解:(1)根据题意得:T(1,1)=2,即ab=2;T=(4,2)=1,即2a+b=5,解得:a=1,b=3;根据题意得:,由得:m;由得:m,不等式组的解集为m,不等式组恰好有3个整数解,即m=0,1,2,23,解得:2p;(2)由T(x,y)=T(y,x),得到=,整理得:(x2y2)(2ba)=0,T(x,y)=T(y,x)对任意实数x,

12、y都成立,2ba=0,即a=2b27(12分)(2014扬州)某店因为经营不善欠下38400元的无息贷款的债务,想转行经营服装专卖店又缺少资金“中国梦想秀”栏目组决定借给该店30000元资金,并约定利用经营的利润偿还债务(所有债务均不计利息)已知该店代理的品牌服装的进价为每件40元,该品牌服装日销售量y(件)与销售价x(元/件)之间的关系可用图中的一条折线(实线)来表示该店应支付员工的工资为每人每天82元,每天还应支付其它费用为106元(不包含债务)(1)求日销售量y(件)与销售价x(元/件)之间的函数关系式;(2)若该店暂不考虑偿还债务,当某天的销售价为48元/件时,当天正好收支平衡(收人=

13、支出),求该店员工的人数;(3)若该店只有2名员工,则该店最早需要多少天能还清所有债务,此时每件服装的价格应定为多少元?解答:解:(1)当40x58时,设y与x的函数解析式为y=k1x+b1,由图象可得,解得y=2x+140当58x71时,设y与x的函数解析式为y=k2x+b2,由图象得,解得,y=x+82,综上所述:y=;(2)设人数为a,当x=48时,y=248+140=44,(4840)44=106+82a,解得a=3;(3)设需要b天,该店还清所有债务,则:b(x40)y82210668400,b,当40x58时,b=,x=时,2x2+220x5870的最大值为180,b,即b380;

14、当58x71时,b=,当x=61时,x2+122x3550的最大值为171,b,即b400综合两种情形得b380,即该店最早需要380天能还清所有债务,此时每件服装的价格应定为55元28(12分)(2014扬州)已知矩形ABCD的一条边AD=8,将矩形ABCD折叠,使得顶点B落在CD边上的P点处(1)如图1,已知折痕与边BC交于点O,连结AP、OP、OA求证:OCPPDA;若OCP与PDA的面积比为1:4,求边AB的长;(2)若图1中的点P恰好是CD边的中点,求OAB的度数;(3)如图2,擦去折痕AO、线段OP,连结BP动点M在线段AP上(点M与点P、A不重合),动点N在线段AB的延长线上,且

15、BN=PM,连结MN交PB于点F,作MEBP于点E试问当点M、N在移动过程中,线段EF的长度是否发生变化?若变化,说明理由;若不变,求出线段EF的长度解答:解:(1)如图1,四边形ABCD是矩形,AD=BC,DC=AB,DAB=B=C=D=90由折叠可得:AP=AB,PO=BO,PAO=BAOAPO=BAPO=90APD=90CPO=POCD=C,APD=POCOCPPDAOCP与PDA的面积比为1:4,=PD=2OC,PA=2OP,DA=2CPAD=8,CP=4,BC=8设OP=x,则OB=x,CO=8x在RtPCO中,C=90,CP=4,OP=x,CO=8x,x2=(8x)2+42解得:x

16、=5AB=AP=2OP=10边AB的长为10(2)如图1,P是CD边的中点,DP=DCDC=AB,AB=AP,DP=APD=90,sinDAP=DAP=30DAB=90,PAO=BAO,DAP=30,OAB=30OAB的度数为30(3)作MQAN,交PB于点Q,如图2AP=AB,MQAN,APB=ABP,ABP=MQPAPB=MQPMP=MQMP=MQ,MEPQ,PE=EQ=PQBN=PM,MP=MQ,BN=QMMQAN,QMF=BNF在MFQ和NFB中,MFQNFBQF=BFQF=QBEF=EQ+QF=PQ+QB=PB由(1)中的结论可得:PC=4,BC=8,C=90PB=4EF=PB=2在(1)的条件下,当点M、N在移动过程中,线段EF的长度不变,长度为2

展开阅读全文
相关资源
相关搜索

当前位置:首页 > 应用文书 > 工作计划

本站为文档C TO C交易模式,本站只提供存储空间、用户上传的文档直接被用户下载,本站只是中间服务平台,本站所有文档下载所得的收益归上传人(含作者)所有。本站仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。若文档所含内容侵犯了您的版权或隐私,请立即通知淘文阁网,我们立即给予删除!客服QQ:136780468 微信:18945177775 电话:18904686070

工信部备案号:黑ICP备15003705号© 2020-2023 www.taowenge.com 淘文阁