《高中新课程数学新课标人教A版选修23312回归分析的基本思想及其初步应用导学案.doc》由会员分享,可在线阅读,更多相关《高中新课程数学新课标人教A版选修23312回归分析的基本思想及其初步应用导学案.doc(5页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。
1、31.2回归分析的基本思想及其初步应用回归分析的基本思想及其初步应用课前预习学案一、预习目标1 了解相关系数r和相关指数R2 2 了解残差分析 3 了解随机误差产生的原因二、预习内容1 相关系数r r0表明两个变量 ;r2)作为的估计量,其中, ,称为残差平方和,可以用衡量回归方程的预报精度,越小,预报精度 用图形来分析残差特性:用 来刻画回归的效果。三、提出问题1 随机误差产生的原因是什么?2如何建立模型拟合效果最好?课内探究学习一、 学习目标1 了解相关系数和相关指数的关系.2 理解随机误差产生的原因.33 会进行简单的残差分析二、学习重难点学习重点 1 相关系数r 2相关指数R2 3 随
2、机误差学习难点 残差分析的应用三、学习过程1 相关系数r= 2 r的性质: 3 随机误差的定义: 4相关指数R2= 5 R2的性质: 6 残差分析的步骤: 四、典型例题例 随着我国经济的快速发展,城乡居民的审核水平不断提高,为研究某市家庭平均收入与月平均生活支出的关系,该市统计部门随机调查10个家庭,得数据如下:家庭编号12345678910x收入(千元)0.81.11.31.51.51.82.02.22.42.8y支出千元0.71.01.21.01.31.51.31.72.02.5(1) 判断家庭平均收入与月平均生活支出是否相关?(2) 若二者线性相关,求回归直线方程。思路点拨:利用散点图观
3、察收入x和支出y是否线性相关,若呈现线性相关关系,可利用公式来求出回归系数,然后获得回归直线方程。解:作散点图O 0.5 1 1.5 2 2.5 3 x平均收入/千元y 月支/千元32.521.5 1 0.5观察发现各个数据对应的点都在一条直线附近,所以二者呈现线性相关关系。(2) 所以回归方程五、当堂练习1 山东鲁洁棉业公式的可按人员在7块并排形状大小相同的试验田上对某棉花新品种进行施化肥量x对产量y影响的试验,得到如下表所示的一组数据(单位:kg)施化肥量x15202530354045产量y330345365405445450455(1) 画出散点图;(2) 判断是否具有相关关系思路点拨
4、(1)散点图如图所示O 10 20 30 40 50 施化肥量 xy 棉花产量500450400350300(2)由散点图可知,各组数据对应点大致都在一条直线附近,所以施化肥量x与产量y具有线性相关关系.六、课后练习与提高1 在对两个变量x、y进行线性回归分析时有下列步骤:对所求出的回归方程作出解释;收集数据;求线性回归方程;求相关系数;根据所搜集的数据绘制散点图。如果根据可靠性要求能够作出变量x、y具有线性相关结论,则在下列操作顺序中正确的是( )A B C D 2 三点(3,10),(7,20),(11,24)的线性回归方程为( ) A B C D3 对有线性相关关系的两个变量建立的回归直线方程中,回归系数b ( )A.可以大于0 B 大于0 C 能等于0 D只能小于04 废品率和每吨生铁成本y(元)之间的回归直线方程为,表明( )A 废品率每增加,生铁成本增加258元; B废品率每增加,生铁成本增加2元;C废品率每增加,生铁成本每吨增加2元;D废品率不变,生铁成本增加256元;