2022版高考数学一轮复习第9章解析几何第7节抛物线课时跟踪检测文新人教A版.doc

上传人:知****量 文档编号:18767856 上传时间:2022-06-02 格式:DOC 页数:6 大小:107KB
返回 下载 相关 举报
2022版高考数学一轮复习第9章解析几何第7节抛物线课时跟踪检测文新人教A版.doc_第1页
第1页 / 共6页
2022版高考数学一轮复习第9章解析几何第7节抛物线课时跟踪检测文新人教A版.doc_第2页
第2页 / 共6页
点击查看更多>>
资源描述

《2022版高考数学一轮复习第9章解析几何第7节抛物线课时跟踪检测文新人教A版.doc》由会员分享,可在线阅读,更多相关《2022版高考数学一轮复习第9章解析几何第7节抛物线课时跟踪检测文新人教A版.doc(6页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。

1、第七节抛物线A级根底过关|固根基|1.抛物线yax2(a0)的准线方程是()Ay ByCy Dy解析:选B抛物线yax2(a0)的焦点,且与抛物线交于A,B两点,假设线段AB的长是8,AB的中点到y轴的距离是2,那么此抛物线方程是()Ay212x By28xCy26x Dy24x解析:选B设A(x1,y1),B(x2,y2),根据抛物线定义,x1x2p8,因为AB的中点到y轴的距离是2,所以2,所以p4,所以抛物线方程为y28x.应选B.4(2022届太原模拟)抛物线C:y22px(p0)的焦点为F,准线为l,且l过点(2,3),M在抛物线C上,假设点N(1,2),那么|MN|MF|的最小值为

2、()A2 B3C4 D5解析:选B依题意,知l:x2,那么抛物线C:y28x,过点M作MMl,垂足为M,过点N作NNl,垂足为N,那么|MN|MF|MN|MM|NN|3,应选B.5(2022届陕西省百校联盟高三模拟)抛物线C:y24x的焦点为F,准线为l,P是l上一点,Q是直线PF与C的一个交点,假设4,那么|QF|()A1 B.C2 D.解析:选B依题意得F(1,0)设l与x轴的交点为M,那么|FM|2.如图,过点Q作l的垂线,垂足为Q1,那么,所以|QQ1|FM|,所以|QF|QQ1|,应选B.6直线l与抛物线C:y24x相交于A,B两点,假设线段AB的中点为(2,1),那么直线l的方程为

3、_解析:设A(x1,y1),B(x2,y2),那么有由得yy4(x1x2),由题可知x1x2.2,即kAB2,直线l的方程为y12(x2),即y2x3.答案:y2x37抛物线x22py(p0)的焦点为F,其准线与双曲线1相交于A,B两点,假设ABF为等边三角形,那么p_解析:在等边三角形ABF中,AB边上的高为p,p,所以B.又因为点B在双曲线上,故1,解得p6.答案:68双曲线C1:1(a0,b0)的离心率为2.假设抛物线C2:x22py(p0)的焦点到双曲线C1的渐近线的距离为2,那么抛物线C2的方程为_解析:因为双曲线C1:1(a0,b0)的离心率为2,所以2 ,解得,所以双曲线的渐近线

4、方程为xy0.因为抛物线C2:x22py(p0)的焦点为F,所以F到双曲线C1的渐近线的距离为2,所以p8,所以抛物线C2的方程为x216y.答案:x216y9抛物线y22px(p0)的焦点为F,A是抛物线上横坐标为4,且位于x轴上方的点,A到抛物线准线的距离等于5,过A作AB垂直于y轴,垂足为B,OB的中点为M.(1)求抛物线的方程;(2)假设过M作MNFA,垂足为N,求点N的坐标解:(1)抛物线y22px的准线为x,由题意可得45,所以p2.所以抛物线方程为y24x.(2)因为点A的坐标是(4,4),由题意得B(0,4),M(0,2)又因为F(1,0),所以kFA,且FA的方程为y(x1)

5、,因为MNFA,所以kMN,且MN的方程为y2x,联立,解得x,y,所以N的坐标为.10设抛物线C:y24x的焦点为F,过F且斜率为k(k0)的直线l与抛物线C交于A,B两点,|AB|8.(1)求l的方程;(2)求过点A,B且与抛物线C的准线相切的圆的方程解:(1)由题意得F(1,0),l的方程为yk(x1)(k0)设A(x1,y1),B(x2,y2)由得k2x2(2k24)xk20.16k2160,故x1x2.所以|AB|AF|BF|(x11)(x21).由题设知8,解得k1(舍去),k1.因此l的方程为yx1.(2)由(1)得,AB的中点坐标为(3,2),所以AB的垂直平分线方程为y2(x

6、3),即yx5.设所求圆的圆心坐标为(x0,y0),那么解得或因此所求圆的方程为(x3)2(y2)216或(x11)2(y6)2144.B级素养提升|练能力|11.抛物线x24y上一动点P到x轴的距离为d1,到直线l:xy40的距离为d 2,那么d1d2的最小值是()A.2 B.1C.2 D.1解析:选D抛物线x24y的焦点为F(0,1),由抛物线的定义可得d1|PF|1,那么d1d2|PF|d21,而|PF|d2的最小值等于焦点F到直线l的距离,即(|PF|d2)min,所以d1d2的最小值是1.12(一题多解)(2022届湖北武汉局部学校调研)过抛物线C:y22px(p0)的焦点F,且斜率

7、为的直线交抛物线C于点M(M在x轴上方),l为抛物线C的准线,点N在l上且MNl,假设|NF|4,那么M到直线NF的距离为()A. B2C3 D2解析:选B解法一:因为直线MF的斜率为,MNl,所以NMF60,又|MF|MN|,且|NF|4,所以NMF是边长为4的等边三角形,所以M到直线NF的距离为2.应选B.解法二:由题意可得直线MF的方程为xy,与抛物线方程y22px联立消去x可得y2pyp20,解得yp或yp,又点M在x轴上方,所以M.因为MNl,所以N,所以|NF| 2p.由题意2p4,解得p2,所以N(1,2),F(1,0),直线NF的方程为xy0,且点M的坐标为(3,2),所以M到

8、直线NF的距离为2,应选B.解法三:由题意可得直线MF的方程为xy,与抛物线方程y22px联立消去x可得y2pyp20,解得yp或yp,又点M在x轴上方,所以M.因为MNl,所以N,所以|NF|2p.由题意2p4,解得p2,所以N(1,2),F(1,0),M(3,2),设M到直线NF的距离为d,在MNF中,SMNF|NF|d|MN|yM,所以d422,应选B.13过抛物线y22px(p0)的焦点,斜率为2的直线交抛物线于A(x1,y1),B(x2,y2)(x10)因为点P(1,2)在抛物线上,所以222p1,解得p2.故所求抛物线的方程是y24x,准线方程是x1.(2)设直线PA的斜率为kPA,直线PB的斜率为kPB.那么kPA(x11),kPB(x21),因为PA与PB的斜率存在且倾斜角互补,所以kPAkPB.所以,所以y12(y22)所以y1y24.由A(x1,y1),B(x2,y2)均在抛物线上,得由得,yy4(x1x2),所以kAB1.- 6 -

展开阅读全文
相关资源
相关搜索

当前位置:首页 > 管理文献 > 商业计划书

本站为文档C TO C交易模式,本站只提供存储空间、用户上传的文档直接被用户下载,本站只是中间服务平台,本站所有文档下载所得的收益归上传人(含作者)所有。本站仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。若文档所含内容侵犯了您的版权或隐私,请立即通知淘文阁网,我们立即给予删除!客服QQ:136780468 微信:18945177775 电话:18904686070

工信部备案号:黑ICP备15003705号© 2020-2023 www.taowenge.com 淘文阁