《2022年浙江省丽水市中考数学试卷解析.docx》由会员分享,可在线阅读,更多相关《2022年浙江省丽水市中考数学试卷解析.docx(34页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。
1、2022年浙江省丽水市中考数学试卷一、选择题,共10小题,每题3分,共30分13分2022丽水在数3,2,0,3中,大小在1和2之间的数是A3B2C0D323分2022丽水计算a23的正确结果是A3a2Ba6Ca5D6a33分2022丽水由4个相同的小立方体搭成的几何体如下列图,那么它的主视图是ABCD43分2022丽水分式可变形为ABCD53分2022丽水一个多边形的每个内角均为120,那么这个多边形是A四边形B五边形C六边形D七边形63分2022丽水如图,数轴上所表示关于x的不等式组的解集是Ax2Bx2Cx1D1x273分2022丽水某小组7位学生的中考体育测试成绩总分值30分依次为27,
2、30,29,27,30,28,30那么这组数据的众数与中位数分别是A30,27B30,29C29,30D30,2883分2022丽水如图,点A为边上的任意一点,作ACBC于点C,CDAB于点D,以下用线段比表示cos的值,错误的选项是ABCD93分2022丽水在平面直角坐标系中,过点2,3的直线l经过一、二、三象限,假设点0,a,1,b,c,1都在直线l上,那么以下判断正确的选项是AabBa3Cb3Dc2103分2022丽水如图,在方格纸中,线段a,b,c,d的端点在格点上,通过平移其中两条线段,使得和第三条线段首尾相接组成三角形,那么能组成三角形的不同平移方法有A3种B6种C8种D12种二、
3、填空题此题有6小题,每题4分,共24分114分2022丽水分解因式:9x2=124分2022丽水有6张卡片,每张卡片上分别写有不同的从1到6的一个自然数从中任意抽出一张卡片,卡片上的数是3的倍数的概率是134分2022丽水如图,圆心角AOB=20,将旋转n得到,那么的度数是度144分2022丽水解一元二次方程x2+2x3=0时,可转化为解两个一元一次方程,请写出其中的一个一元一次方程154分2022丽水如图,四边形ABCD与四边形AECF都是菱形,点E、F在BD上BAD=120,EAF=30,那么=164分2022丽水如图,反比例函数y=的图象经过点1,2,点A是该图象第一象限分支上的动点,连
4、结AO并延长交另一分支于点B,以AB为斜边作等腰直角三角形ABC,顶点C在第四象限,AC与x轴交于点P,连结BP1k的值为2在点A运动过程中,当BP平分ABC时,点C的坐标是三、解答题此题有8个小题,第1719题每题6分,第20、21题每题8分,第22、23题每题10分,第24题12分,共66分,各小题都必须写出解答过程176分2022丽水计算:|4|+01186分2022丽水先化简,再求值:aa3+1a1+a,其中a=196分2022丽水如图,ABC,C=Rt,ACBCD为BC上一点,且到A,B两点的距离相等1用直尺和圆规,作出点D的位置不写作法,保存作图痕迹;2连结AD,假设B=37,求C
5、AD的度数208分2022丽水某运动品牌店对第一季度A、B两款运动鞋的销售情况进行统计两款运动鞋的销售量及总销售额如下列图:1一月份B款运动鞋的销售量是A款的,那么一月份B款运动鞋销售了多少双2第一节度这两款款运动鞋的销售单价保持不变,求三月份的总销售额销售额=销售单价销售量;3综合第一季度的销售情况,请你对这两款运动鞋的进货、销售等方面提出一条建议218分2022丽水如图,在ABC中,AB=AC,以AB为直径的O分别与BC,AC交于点D,E,过点D作O的切线DF,交AC于点F1求证:DFAC;2假设O的半径为4,CDF=22.5,求阴影局部的面积2210分2022丽水甲、乙两人匀速从同一地点
6、到1500米处的图书馆看书,甲出发5分钟后,乙以50米/分的速度沿同一路线行走设甲、乙两人相距s米,甲行走的时间为t分,s关于t的函数图象的一局部如下列图1求甲行走的速度;2在坐标系中,补画s关于t的函数图象的其余局部;3问甲、乙两人何时相距360米2310分2022丽水如图,在矩形ABCD中,E为CD的中点,F为BE上的一点,连结CF并延长交AB于点M,MNCM交射线AD于点N1当F为BE中点时,求证:AM=CE;2假设=2,求的值;3假设=n,当n为何值时,MNBE2412分2022丽水某乒乓球馆使用发球机进行辅助训练,出球口在桌面中线端点A处的正上方,假设每次出发的乒乓球的运动路线固定不
7、变,且落在中线上在乒乓球运行时,设乒乓球与端点A的水平距离为x米,与桌面的高度为y米,运行时间为t秒,经屡次测试后,得到如下局部数据:t秒00.160.20.40.60.640.86X米00.40.511.51.62y米0.250.3780.40.450.40.3780.251当t为何值时,乒乓球到达最大高度2乒乓球落在桌面时,与端点A的水平距离是多少3乒乓球落在桌面上弹起后,y与x满足y=ax32+ky用含的代数式表示k;球网高度为0.14米,球桌长1.42米假设球弹起后,恰好有唯一的击球点,可以将球沿直线扣杀到点A,求的值2022年浙江省丽水市中考数学试卷参考答案与试题解析一、选择题,共1
8、0小题,每题3分,共30分13分2022丽水在数3,2,0,3中,大小在1和2之间的数是A3B2C0D3考点:有理数大小比较菁优网版权所有分析:根据有理数的大小比较法那么比较即可解答:解:根据0大于负数,小于正数,可得0在1和2之间,应选:C点评:此题考查了有理数的大小比较的应用,注意:正数都大于0,负数都小于0,正数都大于负数,两个负数比较大小,其绝对值大的反而小23分2022丽水计算a23的正确结果是A3a2Ba6Ca5D6a考点:幂的乘方与积的乘方菁优网版权所有分析:根据幂的乘方,即可解答解答:解:a23=a6,应选:B点评:此题考查了幂的乘方,理清指数的变化是解题的关键33分2022丽
9、水由4个相同的小立方体搭成的几何体如下列图,那么它的主视图是ABCD考点:简单几何体的三视图菁优网版权所有分析:主视图有2列,每列小正方形数目分别为2,1解答:解:几何体的主视图有2列,每列小正方形数目分别为2,1,应选A点评:此题考查实物体的三视图在画图时一定要将物体的边缘、棱、顶点都表达出来,看得见的轮廓线都画成实线,看不见的画成虚线,不能漏掉此题画几何体的三视图时应注意小正方形的数目及位置43分2022丽水分式可变形为ABCD考点:分式的根本性质菁优网版权所有分析:先提取1,再根据分式的符号变化规律得出即可解答:解:=,应选D点评:此题考查了分式的根本性质的应用,能正确根据分式的根本性质
10、进行变形是解此题的关键,注意:分式本身的符号,分子的符号,分母的符号,变换其中的两个,分式的值不变53分2022丽水一个多边形的每个内角均为120,那么这个多边形是A四边形B五边形C六边形D七边形考点:多边形内角与外角菁优网版权所有分析:一个多边形的每个内角都相等,根据内角与外角互为邻补角,因而就可以求出外角的度数根据任何多边形的外角和都是360度,利用360除以外角的度数就可以求出外角和中外角的个数,即多边形的边数解答:解:外角是180120=60,36060=6,那么这个多边形是六边形应选:C点评:考查了多边形内角与外角,根据外角和的大小与多边形的边数无关,由外角和求正多边形的边数,是常见
11、的题目,需要熟练掌握63分2022丽水如图,数轴上所表示关于x的不等式组的解集是Ax2Bx2Cx1D1x2考点:在数轴上表示不等式的解集菁优网版权所有分析:根据在数轴上表示不等式组解集的方法进行解答即可解答:解:由数轴可得:关于x的不等式组的解集是:x2应选:A点评:此题考查了在数轴上表示不等式的解集,熟知“小于向左,大于向右是解答此题的关键73分2022丽水某小组7位学生的中考体育测试成绩总分值30分依次为27,30,29,27,30,28,30那么这组数据的众数与中位数分别是A30,27B30,29C29,30D30,28考点:众数;中位数菁优网版权所有分析:众数是一组数据中出现次数最多的
12、数据,注意众数可以不止一个;找中位数要把数据按从小到大的顺序排列,位于最中间的一个数或两个数的平均数为中位数解答:解:众数是一组数据中出现次数最多的数,在这一组数据中30出现了3次,次数最多,故众数是30;将这组数据从小到大的顺序排列为:27,27,28,29,30,30,30,处于中间位置的那个数是29,那么由中位数的定义可知,这组数据的中位数是29应选B点评:此题考查了中位数和众数的概念,一组数据中出现次数最多的数据叫做众数;将一组数据按照从小到大或从大到小的顺序排列,如果数据的个数是奇数,那么处于中间位置的数就是这组数据的中位数;如果这组数据的个数是偶数,那么中间两个数据的平均数就是这组
13、数据的中位数83分2022丽水如图,点A为边上的任意一点,作ACBC于点C,CDAB于点D,以下用线段比表示cos的值,错误的选项是ABCD考点:锐角三角函数的定义菁优网版权所有分析:利用垂直的定义以及互余的定义得出=ACD,进而利用锐角三角函数关系得出答案解答:解:ACBC,CDAB,+BCD=ACD+BCD,=ACD,cos=cosACD=,只有选项C错误,符合题意应选:C点评:此题主要考查了锐角三角函数的定义,得出=ACD是解题关键93分2022丽水在平面直角坐标系中,过点2,3的直线l经过一、二、三象限,假设点0,a,1,b,c,1都在直线l上,那么以下判断正确的选项是AabBa3Cb
14、3Dc2考点:一次函数图象上点的坐标特征菁优网版权所有分析:设一次函数的解析式为y=kx+bk0,根据直线l过点2,3点0,a,1,b,c,1得出斜率k的表达式,再根据经过一、二、三象限判断出k的符号,由此即可得出结论解答:解:设一次函数的解析式为y=kx+bk0,直线l过点2,3点0,a,1,b,c,1,斜率k=,即k=b3=,直线l经过一、二、三象限,k0,a3,b3,c2应选D点评:此题考查的是一次函数图象上点的坐标特点,即一次函数图象上各点的坐标一定适合此函数的解析式103分2022丽水如图,在方格纸中,线段a,b,c,d的端点在格点上,通过平移其中两条线段,使得和第三条线段首尾相接组
15、成三角形,那么能组成三角形的不同平移方法有A3种B6种C8种D12种考点:利用平移设计图案;三角形三边关系;勾股定理菁优网版权所有分析:利用网格结合三角形三边关系得出只有通过平移ab,ad,bd可得到三角形,进而得出答案解答:解:由网格可知:a=,b=d=,c=2,那么能组成三角形的只有:a,b,d可以分别通过平移ab,ad,bd得到三角形,平移其中两条线段方法有两种,即能组成三角形的不同平移方法有6种应选:B点评:此题主要考查了利用平移设计图案以及勾股定理和三角形三边关系,得出各边长是解题关键二、填空题此题有6小题,每题4分,共24分114分2022丽水分解因式:9x2=3+x3x考点:因式
16、分解-运用公式法菁优网版权所有分析:此题中两个平方项的符号相反,直接运用平方差公式分解因式解答:解:9x2=32x2=3+x3x点评:此题主要考查利用平方差公式分解因式,熟记能用平方差公式分解因式的多项式的特征是解题的关键124分2022丽水有6张卡片,每张卡片上分别写有不同的从1到6的一个自然数从中任意抽出一张卡片,卡片上的数是3的倍数的概率是考点:概率公式菁优网版权所有分析:分别求出从1到6的数中3的倍数的个数,再根据概率公式解答即可解答:解:从1到6的数中3的倍数有3,6,共2个,从中任取一张卡片,P卡片上的数是3的倍数=故答案为:点评:考查了概率公式,用到的知识点为:概率=所求情况数与
17、总情况数之比134分2022丽水如图,圆心角AOB=20,将旋转n得到,那么的度数是20度考点:圆心角、弧、弦的关系;旋转的性质菁优网版权所有专题:计算题分析:先根据旋转的性质得=,那么根据圆心角、弧、弦的关系得到DOC=AOB=20,然后根据圆心角的度数等于它所对弧的度数即可得到的度数解答:解:将旋转n得到,=,DOC=AOB=20,的度数为20度故答案为20点评:此题考查了圆心角、弧、弦的关系:在同圆或等圆中,如果两个圆心角、两条弧、两条弦中有一组量相等,那么它们所对应的其余各组量都分别相等也考查了旋转的性质144分2022丽水解一元二次方程x2+2x3=0时,可转化为解两个一元一次方程,
18、请写出其中的一个一元一次方程x1=0或x+3=0考点:解一元二次方程-因式分解法菁优网版权所有专题:开放型分析:把方程左边分解,那么原方程可化为x1=0或x+3=0解答:解:x1x+3=0,x1=0或x+3=0故答案为x1=0或x+3=0点评:此题考查了解一元二次方程因式分解法:先把方程的右边化为0,再把左边通过因式分解化为两个一次因式的积的形式,那么这两个因式的值就都有可能为0,这就能得到两个一元一次方程的解,这样也就把原方程进行了降次,把解一元二次方程转化为解一元一次方程的问题了数学转化思想154分2022丽水如图,四边形ABCD与四边形AECF都是菱形,点E、F在BD上BAD=120,E
19、AF=30,那么=考点:菱形的性质菁优网版权所有分析:利用菱形的性质对角线平分对角,结合勾股定理以及锐角三角函数关系表示出AB,AE的长,进而求出即可解答:解:连接AC,过点E作ENAB于点N,四边形ABCD与四边形AECF都是菱形,点E、F在BD上,BAD=120,EAF=30,ABD=30,EAC=15,那么BAE=45,设AN=x,那么NE=x,AE=x,BN=x,=故答案为:点评:此题主要考查了菱形的性质以及锐角三角函数关系等知识,表示出AB,AE的长是解题关键164分2022丽水如图,反比例函数y=的图象经过点1,2,点A是该图象第一象限分支上的动点,连结AO并延长交另一分支于点B,
20、以AB为斜边作等腰直角三角形ABC,顶点C在第四象限,AC与x轴交于点P,连结BP1k的值为22在点A运动过程中,当BP平分ABC时,点C的坐标是2,考点:反比例函数综合题菁优网版权所有分析:1把点1,2代入反比例函数y=,求出k即可;2连接OC,作AMx轴于M,CNx轴于N,那么AMCN,AMO=ONC=90,先由AAS证明OAMCON,得出OM=CN,AM=ON,再由三角形的角平分线性质得出=,根据平行线的性质得出比例式:=,设CN=OM=x,那么AM=ON=x,根据题意得出方程:xx=2,解方程求出CN、ON,即可得出点C的坐标解答:解:1把点1,2代入反比例函数y=得:k=12=2,故
21、答案为:2;2连接OC,作AMx轴于M,CNx轴于N,如下列图:那么AMCN,AMO=ONC=90,AOM+OAM=90,根据题意得:点A和点B关于原点对称,OA=OB,ABC是等腰直角三角形,AB为斜边,OCAB三线合一,OC=AB=OA,AC=BC,AB=BC,AOC=90,即AOM+CON=90,OAM=CON,在OAM和CON中,OAMCONAAS,OM=CN,AM=ON,BP平分ABC,=,AMCN,=,设CN=OM=x,那么AM=ON=x,点A在反比例函数y=上,OMAM=2,即xx=2,解得:x=,CN=,ON=2,点C的坐标为:2,;故答案为:2,点评:此题是反比例函数综合题目
22、,考查了用待定系数法求反比例函数解析式、等腰直角三角形的性质、全等三角形的判定与性质、三角形的角平分线性质、平行线的性质等知识;此题难度较大,综合性强,特别是2中,需要通过作辅助线证明三角形全等和运用三角形的角平分线的性质才能得出结果三、解答题此题有8个小题,第1719题每题6分,第20、21题每题8分,第22、23题每题10分,第24题12分,共66分,各小题都必须写出解答过程176分2022丽水计算:|4|+01考点:实数的运算;零指数幂;负整数指数幂菁优网版权所有专题:计算题分析:原式第一项利用绝对值的代数意义化简,第二项利用零指数幂法那么计算,最后一项利用负整数指数幂法那么计算即可得到
23、结果解答:解:原式=4+12=3点评:此题考查了实数的运算,熟练掌握运算法那么是解此题的关键186分2022丽水先化简,再求值:aa3+1a1+a,其中a=考点:整式的混合运算化简求值菁优网版权所有分析:原式第一项利用单项式乘以多项式法那么计算,第二项利用平方差公式化简,去括号合并得到最简结果,把a的值代入计算即可求出值解答:解:原式=a23a+1a2=13a,当a=时,原式=1点评:此题考查了整式的混合运算化简求值,熟练掌握运算法那么是解此题的关键196分2022丽水如图,ABC,C=Rt,ACBCD为BC上一点,且到A,B两点的距离相等1用直尺和圆规,作出点D的位置不写作法,保存作图痕迹;
24、2连结AD,假设B=37,求CAD的度数考点:作图复杂作图;线段垂直平分线的性质菁优网版权所有分析:1利用线段垂直平分线的作法得出D点坐标即可;2利用线段垂直平分线的性质得出,BAD=B=37,进而求出即可解答:解:1如下列图:点D即为所求;2在RtABC中,B=37,CAB=53,又AD=BD,BAD=B=37,CAD=5337=16点评:此题主要考查了复杂作图以及线段垂直平分线的性质,正确利用线段垂直平分线的性质得出BAD=B=37是解题关键208分2022丽水某运动品牌店对第一季度A、B两款运动鞋的销售情况进行统计两款运动鞋的销售量及总销售额如下列图:1一月份B款运动鞋的销售量是A款的,
25、那么一月份B款运动鞋销售了多少双2第一节度这两款款运动鞋的销售单价保持不变,求三月份的总销售额销售额=销售单价销售量;3综合第一季度的销售情况,请你对这两款运动鞋的进货、销售等方面提出一条建议考点:折线统计图;条形统计图菁优网版权所有分析:1用一月份A款的数量乘以,即可得出一月份B款运动鞋销售量;2设A,B两款运动鞋的销量单价分别为x元,y元,根据图形中给出的数据,列出算式,再进行计算即可;3根据条形统计图和折线统计图所给出的数据,提出合理的建议即可解答:解:1根据题意得:50=40双答:一月份B款运动鞋销售了40双;2设A,B两款运动鞋的销量单价分别为x元,y元,根据题意得:,解得:那么三月
26、份的总销售额是:40065+50026=39000=3.9万元;3从销售量来看,A款运动鞋销售量逐月增加,比B款运动鞋销量大,建议多进A款运动鞋,少进或不进B款运动鞋点评:此题考查的是条形统计图和折线统计图的综合运用读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键条形统计图能清楚地表示出每个工程的数据218分2022丽水如图,在ABC中,AB=AC,以AB为直径的O分别与BC,AC交于点D,E,过点D作O的切线DF,交AC于点F1求证:DFAC;2假设O的半径为4,CDF=22.5,求阴影局部的面积考点:切线的性质;扇形面积的计算菁优网版权所有分析:1连接OD,易得ABC=ODB,由
27、AB=AC,易得ABC=ACB,等量代换得ODB=ACB,利用平行线的判定得ODAC,由切线的性质得DFOD,得出结论;2连接OE,利用1的结论得ABC=ACB=67.5,易得BAC=45,得出AOE=90,利用扇形的面积公式和三角形的面积公式得出结论解答:1证明:连接OD,OB=OD,ABC=ODB,AB=AC,ABC=ACB,ODB=ACB,ODAC,DF是O的切线,DFOD,DFAC2解:连接OE,DFAC,CDF=22.5,ABC=ACB=67.5,BAC=45,OA=OE,AOE=90,O的半径为4,S扇形AOE=4,SAOE=8 ,S阴影=48点评:此题主要考查了切线的性质,扇形的
28、面积与三角形的面积公式,圆周角定理等,作出适当的辅助线,利用切线性质和圆周角定理,数形结合是解答此题的关键2210分2022丽水甲、乙两人匀速从同一地点到1500米处的图书馆看书,甲出发5分钟后,乙以50米/分的速度沿同一路线行走设甲、乙两人相距s米,甲行走的时间为t分,s关于t的函数图象的一局部如下列图1求甲行走的速度;2在坐标系中,补画s关于t的函数图象的其余局部;3问甲、乙两人何时相距360米考点:一次函数的应用菁优网版权所有分析:1由图象可知t=5时,s=150米,根据速度=路程时间,即可解答;2根据图象提供的信息,可知当t=35时,乙已经到达图书馆,甲距图书馆的路程还有1500105
29、0=450米,甲到达图书馆还需时间;45030=15分,所以35+15=50分,所以当s=0时,横轴上对应的时间为503分别求出当12.5t35时和当35t50时的函数解析式,根据甲、乙两人相距360米,即s=360,分别求出t的值即可解答:解:1甲行走的速度:1505=30米/分;2当t=35时,甲行走的路程为:3035=1050米,乙行走的路程为:35550=1500米,当t=35时,乙已经到达图书馆,甲距图书馆的路程还有15001050=450米,甲到达图书馆还需时间;45030=15分,35+15=50分,当s=0时,横轴上对应的时间为50补画的图象如下列图横轴上对应的时间为50,3如
30、图2,设乙出发经过x分和甲第一次相遇,根据题意得:150+30x=50x,解得:x=7.5,7.5+5=12.5分,由函数图象可知,当t=12.5时,s=0,点B的坐标为12.5,0,当12.5t35时,设BC的解析式为:s=kt+b,把C35,450,B12.5,0代入可得:解得:,s=20t250,当35t50时,设CD的解析式为y=k1x+b1,把D50,0,C35,450代入得:解得:s=30t+1500,甲、乙两人相距360米,即s=360,解得:t1=30.5,t2=38,当甲行走30.5分钟或38分钟时,甲、乙两人何时相距360米点评:此题考查了行程问题的数量关系的运用,一次函数
31、的解析式的运用,解答时求出函数的解析式是关键2310分2022丽水如图,在矩形ABCD中,E为CD的中点,F为BE上的一点,连结CF并延长交AB于点M,MNCM交射线AD于点N1当F为BE中点时,求证:AM=CE;2假设=2,求的值;3假设=n,当n为何值时,MNBE考点:相似形综合题;全等三角形的判定与性质;矩形的性质菁优网版权所有专题:综合题分析:1如图1,易证BMFECF,那么有BM=EC,然后根据E为CD的中点及AB=DC就可得到AM=EC;2如图2,设MB=a,易证ECFBMF,根据相似三角形的性质可得EC=2a,由此可得AB=4a,AM=3a,BC=AD=2a易证AMNBCM,根据
32、相似三角形的性质即可得到AN=a,从而可得ND=ADAN=a,就可求出的值;3如图3,设MB=a,同2可得BC=2a,CE=na由MNBE,MNMC可得EFC=HMC=90,从而可证到MBCBCE,然后根据相似三角形的性质即可求出n的值解答:解:1当F为BE中点时,如图1,那么有BF=EF四边形ABCD是矩形,AB=DC,ABDC,MBF=CEF,BMF=ECF在BMF和ECF中,BMFECF,BM=ECE为CD的中点,EC=DC,BM=EC=DC=AB,AM=BM=EC;2如图2,设MB=a,四边形ABCD是矩形,AD=BC,AB=DC,A=ABC=BCD=90,ABDC,ECFBMF,=2
33、,EC=2a,AB=CD=2CE=4a,AM=ABMB=3a=2,BC=AD=2aMNMC,CMN=90,AMN+BMC=90A=90,ANM+AMN=90,BMC=ANM,AMNBCM,=,=,AN=a,ND=ADAN=2aa=a,=3;3当=n时,如图3,设MB=a,同2可得BC=2a,CE=naMNBE,MNMC,EFC=HMC=90,FCB+FBC=90MBC=90,BMC+FCB=90,BMC=FBCMBC=BCE=90,MBCBCE,=,=,n=4点评:此题主要考查了相似三角形的判定与性质、全等三角形的判定与性质、矩形的性质、同角的余角相等、三角形外角的性质等知识,利用相似三角形的
34、性质得到线段之间的关系是解决此题的关键2412分2022丽水某乒乓球馆使用发球机进行辅助训练,出球口在桌面中线端点A处的正上方,假设每次出发的乒乓球的运动路线固定不变,且落在中线上在乒乓球运行时,设乒乓球与端点A的水平距离为x米,与桌面的高度为y米,运行时间为t秒,经屡次测试后,得到如下局部数据:t秒00.160.20.40.60.640.86X米00.40.511.51.62y米0.250.3780.40.450.40.3780.251当t为何值时,乒乓球到达最大高度2乒乓球落在桌面时,与端点A的水平距离是多少3乒乓球落在桌面上弹起后,y与x满足y=ax32+ky用含的代数式表示k;球网高度
35、为0.14米,球桌长1.42米假设球弹起后,恰好有唯一的击球点,可以将球沿直线扣杀到点A,求的值考点:二次函数的应用菁优网版权所有分析:1利用网格中数据直接得出乒乓球到达最大高度时的时间;2首先求出函数解析式,进而求出乒乓球落在桌面时,与端点A的水平距离;3由2得乒乓球落在桌面上时,得出对应点坐标,字啊利用待定系数法求出函数解析式即可;由题意可得,扣杀路线在直线y=x上,由得,y=ax32a,进而利用根的判别式求出a的值,进而求出x的值解答:解:1由表格中数据可得,t=0.4秒,乒乓球到达最大高度;2由表格中数据,可得y是x的二次函数,可设y=ax12+0.45,将0,0.25代入,可得:a=
36、,那么y=x12+0.45,当y=0时,0=x12+0.45,解得:x1=,x2=舍去,即乒乓球于端点A的水平距离是m;3由2得乒乓球落在桌面上时,对应点为:,0,代入y=ax32+k,得32a+k=0,化简得:k=a;由题意可得,扣杀路线在直线y=x上,由得,y=ax32a,令ax32a=x,整理得:20ax2120a+2x+175=0,当=120a+22420a175a=0时符合题意,解方程得:a1=,a2=,当a1=时,求得x=,不符合题意,舍去;当a2=时,求得x=,符合题意点评:此题主要考查了二次函数对应用以及根的判别式和一元二次方程的解法等知识,利用图表中数据得出函数解析式是解题关键菁优网2022年7月20日