《数学年谱之公元前_趣味数学 - .doc》由会员分享,可在线阅读,更多相关《数学年谱之公元前_趣味数学 - .doc(4页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。
1、数学年谱之公元前_趣味数学 - 查字典数学网约公元前4000年,中国西安半坡的陶器上出现数字刻符。公元前3000前1700年,巴比伦的泥版上出现数学记载。公元前2700年,中国黄帝时代传说隶首做算数之说,大挠发明了甲子。公元前2500年前,据中国战国时尸佼著尸子记载:“古者,陲(注:传说为黄帝或尧时人)为规、矩、准、绳,使天下仿焉”。这相当于在已有“圆,方、平、直”等形的概念。公元前2100年,中国夏朝出现象征吉祥的河图洛书纵横图,即为“九宫算”,这被认为是现代“组合数学”最古老的发现。美索不达米亚人已有了乘法表,其中使用着六十进位制的算法。公元前1900前1600,古埃及的纸草书上出现数学记
2、载,已有基于十进制的记数法,将乘法简化为加法的算术、分数计算法。并已有三角形及圆的面积、正方角锥体、锥台体积的度量法等。公元前1950年,巴比伦人能解二个变数的一次和二次方程,已经知道“勾股定理”。公元前1400年,中国殷代甲骨文卜辞记录已有十进制记数,最大数字是三万。公元前1050年,在中国的西周时期,“九数”成为“国子”的必修课程之一。公元前六世纪,古希腊的泰勒斯发展了初等几何学,开始证明几何命题。古希腊毕达哥拉斯学派认为数是万物的本原,宇宙的组织是数及其关系的和谐体系。证明了勾股定理,发现了无理数,引起了所谓第一次数学危机。印度人求出=1.4142156。公元前462年左右,意大利的埃利
3、亚学派的芝诺等人指出了在运动和变化中的各种矛盾,提出了飞矢不动等有关时间、空间和数的芝诺悖理(古希腊巴门尼德、芝诺等)。公元前五世纪,古希腊丘斯的希波克拉底研究了以直线及圆弧形所围成的平面图形的面积,指出相似弓形的面积与其弦的平方成正比。开始把几何命题按科学方式排列。公元前四世纪,古希腊的欧多克斯把比例论推广到不可通约量上,发现了“穷竭法”。开始在数学上作出以公理为依据的演绎整理。古希腊德谟克利特学派用“原子法”计算面积和体积,一个线段、一个面积或一个体积被设想为由很多不可分的“原子”所组成。提出圆锥曲线,得到了三次方程式的最古老的解法。古希腊的亚里士多德等建立了亚里士多德学派,开始对数学、动
4、物学等进行了综合的研究。公元前400年,中国战国时期的墨经中记载了一些几何学的义理。公元前380年,古希腊柏拉图学派指出数学对训练思维的作用,研究正多面体、不可公度量。公元前350年,古希腊梅纳克莫斯发现三种圆锥曲线,并用以解立方体问题。古希腊色诺科拉底开始编写几何学的历史。古希腊的塞马力达斯开始世界简单方程组公元前335年,古希腊的欧德姆斯开始编写数学史。公元前三世纪,古希腊欧几里得的几何学原本十三卷发表,把前人和他本人的发现系统化,确立几何学的逻辑体系,为世界上最早的公理化数学著作。公元前三世纪,古希腊的阿基米德研究了曲线图形和曲面体所围成的面积、体积;研究了抛物面、双曲面、椭圆面,讨论了圆柱、圆锥和半球之关系,还研究了螺线。战国时期的中国,筹算成为当时的主要计算方法;出现庄子、考工记记载中的极限概念、分数运算法、特殊角度概念及对策论的例证。公元前230年,古希腊的埃拉托色尼提出素数概念,并发明了寻找素数的筛法。公元前三至前二世纪,古希腊的阿波罗尼发表了八本圆锥曲线学,这是最早关于椭圆、抛物线和双曲线的论著。公元前170年,湖北出现竹简算书算数书。公元前150年,古希腊的希帕恰斯开始研究球面三角,奠定三角术的基础。约公元前一世纪,中国的周髀算经发表。其中阐述了“盖天说”和四分历法,使用分数算法和开方法等。 第 4 页 共 4 页