《数学年谱之公元1800_趣味数学 - .doc》由会员分享,可在线阅读,更多相关《数学年谱之公元1800_趣味数学 - .doc(6页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。
1、数学年谱之公元1800_趣味数学 - 查字典数学网公元年1801年,德国的高斯出版算术研究,开创近代数论。1809年,法国的蒙日出版了微分几何学的第一本书分析在几何学上的应用。1812年,法国的拉普拉斯出版分析概率论一书,这是近代概率论的先驱。1816年,德国的高斯发现非欧几何,但未发表。1821年,法国的柯西出版分析教程,用极限严格地定义了函数的连续、导数和积分,研究了无穷级数的收敛性等。1822年,法国的彭色列系统研究了几何图形在投影变换下的不变性质,建立了射影几何学。法国的傅立叶研究了热传导问题,发明用傅立叶级数求解偏微分方程的边值问题,在理论和应用上都有重大影响。1824年,挪威的阿贝
2、尔证明用根式求解五次方程的不可能性。1826年,挪威的阿贝尔发现连续函数的级数之和并非连续函数。俄国的罗巴切夫斯基和匈牙利的波约改变欧几里得几何学中的平行公理,提出非欧几何学的理论。18271829年,德国的雅可比、挪威的阿贝尔和法国的勒阿德尔共同确立了椭圆积分与椭圆函数的理论,在物理、力学中都有应用。1827年,德国的高斯建立了微分几何中关于曲面的系统理论。德国的莫比乌斯出版重心演算,第一次引进齐次坐标。1830年,捷克的波尔查诺给出一个连续而没有导数的所谓“病态”函数的例子。法国的伽罗华在代数方程可否用根式求解的研究中建立群论。1831年,法国的柯西发现解析函数的幂级数收敛定理。德国的高斯
3、建立了复数的代数学,用平面上的点来表示复数,破除了复数的神秘性。1835年,法国的斯特姆提出确定代数方程式实根位置的方法。1836年,法国的柯西证明解析系数微分方程解的存在性。瑞士的史坦纳证明具有已知周长的一切封闭曲线中包围最大面积的图形一定是圆。1837年,德国的狄利克莱第一次给出了三角级数的一个收敛性定理。1840年,德国的狄利克莱把解析函数用于数论,并且引入了“狄利克莱”级数。1841年,德国的雅可比建立了行列式的系统理论。1844年,德国的格拉斯曼研究多个变元的代数系统,首次提出多维空间的概念。1846年,德国的雅克比提出求实对称矩阵特征值的雅可比方法。1847年,英国的布尔创立了布尔
4、代数,在后来的电子计算机设计有重要应用。1848年,德国的库莫尔研究各种数域中的因子分解问题,引进了理想数。英国的斯托克斯发现函数极限的一个重要概念一致收敛,但未能严格表述。1850年,德国的黎曼给出了“黎曼积分”的定义,提出函数可积的概念。1851年,德国的黎曼提出共形映照的原理,在力学、工程技术中应用颇多,但未给出证明。1854年,德国的黎曼建立了更广泛的一类非欧几何学黎曼几何学,并提出多维拓扑流形的概念。俄国的车比雪夫开始建立函数逼近论,利用初等函数来逼近复杂的函数。二十世纪以来,由于电子计算机的应用,使函数逼近论有很大的发展。1856年,德国的维尔斯特拉斯确立极限理论中的一致收敛性的概
5、念。1857年,德国的黎曼详细地讨论了黎曼面,把多值函数看成黎曼面上的单值函数。1868年,德国的普吕克在解析几何中引进一些新的概念,提出可以用直线、平面等作为基本的空间元素。1870年,挪威的李发现李群,并用以讨论微分方程的求积问题。德国的克朗尼格给出了群论的公理结构,这是后来研究抽象群的出发点。1872年,数学分析的“算术化”,即以有理数的集合来定义实数(德国戴特金、康托尔、维尔斯特拉斯)。德国的克莱茵发表了“埃尔朗根纲领”,把每一种几何学都看成是一种特殊变换群的不变量论。1873年,法国的埃尔米特证明了e是超越数。1876年,德国的维尔斯特拉斯出版解析函数论,把复变函数论建立在了幂级数的
6、基础上。18811884年,美国的吉布斯制定了向量分析。18811886年,法国的彭加勒连续发表微分方程所确定的积分曲线的论文,开创微分方程定性理论。1882年,德国的林德曼证明了圆周率是超越数。英国的亥维赛制定运算微积,这是求解某些微分方程的简便方法,工程上常有应用。1883年,德国的康托尔建立了集合论,发展了超穷基数的理论。1884年,德国的弗莱格出版数论的基础,这是数理逻辑中量词理论的发端。18871896年,德国的达布尔出版了四卷曲面的一般理论的讲义,总结了一个世纪来关于曲线和曲面的微分几何学的成就。1892年,俄国的李雅普诺夫建立运动稳定性理论,这是微分方程定性理论研究的重要方面。18921899年,法国的彭加勒创立自守函数论。1895年,法国的彭加勒提出同调的概念,开创代数拓扑学。1899年,德国希尔伯特的几何学基础出版,提出欧几里得几何学的严格公理系统,对数学的公理化思潮有很大影响。瑞利等人最早提出基于统计概念的计算方法蒙特卡诺方法的思想。二十世纪二十年代柯朗(德)、冯诺伊曼(美)等人发展了这个方法,后在电子计算机上获得广泛应用。 第 6 页 共 6 页