《七年级相反数的教案模板.doc》由会员分享,可在线阅读,更多相关《七年级相反数的教案模板.doc(9页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。
1、七年级相反数的教案模板“0的是0”也是定义的一部分。关于“数a的是-a”,应该明确的是-a不一定是正数,a不一定是正数。一起看看七年级相反数的教案!欢迎查阅!七年级相反数的教案1教学目标1.了解的意义,会求有理数的;2.进一步培养学生分类讨论的思想和观察、归纳与概括的能力.3.初步认识对立统一的规律。教学建议一、重点、难点分析本节的重点是了解的意义,理解的代数定义与几何定义的一致性.难点是多重符号的化简.“只有符号不同的两个数”中的“只有”指的是除了符号不同以外完全相同(也就是下节课要学的绝对值相同)。不能理解为只要符号不同的两个数就互为。另外,“0的是0”也是定义的一部分。关于“数a的是-a
2、”,应该明确的是-a不一定是正数,a不一定是正数。关于多重符号的化简,如果一个正数前面有偶数个“-”号,可以把“-”号一起去掉;一个正数前面有奇数个“-”号,则化简符号后只剩一个“-”号。二、知识结构的定义 的性质及其判定 的应用三、教法建议这节课教学的主要内容是互为的概念。由于教材先讲,后讲绝对值,所以的定义只是形式上的描述,主要通过的几何意义理解的概念。教学中建议,直接给出的几何定义,通过实例了解求一个数的的方法。按着数轴绝对值的顺序教学,可充分利用数轴使数与形更好地结合起来。四、的相关知识1.的意义(1)只有符号不同的两个数叫做互为,如-1999与1999互为。(2)从数轴上看,位于原点
3、两旁,且与原点距离相等的两点所表示的两个数叫做互为。如5与-5是互为。(3)0的是0。也只有0的是它的本身。(4)是表示两个数的相互关系,不能单独存在。2.的表示在一个数的前面添上“-”号就成为原数的。若 表示一个有理数,则 的表示为- 。在一个数的前面添上“+”号仍与原数相联系同。例如,+7=7,特别地,+0=0,-0=0。3.的特性若 互为,则 ,反之若 ,则 互为。4.多重符号化简(1)的意义是简化多重符号的依据。如是-1的,而-1的为+1,所以。(2)多重符号化简的结果是由“-”号的个数决定的。如果“-”号是奇数个,则果为负;如果是偶然数个,则结果为正。可简写为“奇负偶正”。例如, 。
4、由此可见,化简一个数就是把多重符号化成单一符号,若结果是“+”号,一般省略不写。七年级相反数的教案2一、素质教育目标(一)知识教学点1.了解:互为的几何意义.2.掌握:给出一个数能求出它的.(二)能力训练点1.训练学生会利用数轴采用数形结合的方法解决问题.2.培养学生自己归纳总结规律的能力.(三)德育渗透点1.通过解释的几何意义,进一步渗透数形结合的思想.2.通过求一个数的,使学生进一步认识对应、统一规律.(四)美育渗透点1.通过求一个数的知道任何一个数都有它的,学生会进一步领略到数的完整美.2.通过简化一个数的符号,使学生进一步体会数学的简洁美.二、学法引导1.教学方法:利用引导发现法,教师
5、注意过渡导语 的设置,充分发挥学生的主体地位.2.学生学法:感性认识理性认识练习反馈总结.三、重点、难点、疑点及解决办法1.重点:求已知数的.2.难点:根据的意义化简符号.四、课时安排1课时五、教具学具准备投影仪、三角板、自制胶片.六、师生互动活动设计学生演示,教师点拨,师生共同得出的概念,教师出示投影,学生以多种形式练习反馈.七、教学步骤(一)探索新知,导入 新课1.互为的概念的引出演示活动:要一个学生向前走5步,向后走5步.提出问题“如果向前为正,向前走5步,向后走5步各记作什么?学生活动:一个学生口答,即向前走5步记作+5;向后走5步记作-5步.板书+5,-5师:这位同学两次行走的距离都
6、是5步,但两次的方向相反,这就决定这两个数的符号不同,像这样的两个数叫做互为.板书2.3【教法说明】由于有了正负数的学习,进行以上演示,学生们非常容易地得出+5,-5两数,并能根据演示过程体会出这两个数的联系与区别,在轻松愉悦的活动中获得了知识,认识了互为.师:画一数轴,在数轴上任意标出两点,使这两点表示的数互为(一个学生板演,其他学生自练)师:这样的两个数即互为,你能试述具备什么特点的两数是互为?(学生讨论后举手回答)板书只有符号不同的两个数,其中一个叫另一个的.【教法说明】在演示活动后,已出现了+5,-5这两个数,教师及时阐明它们就是互为的两数,这时不急于总结互为的概念,而是又提供了一个学
7、生体会概念的机利用数轴任找一组互为的两数,先观察在数轴上表示这两个数的点的位置关系,再观察两个数本身的特点.更形象直观地引导学生自己得出的概念.2.理解概念(出示投影1)判断:(1)-5是5的( )(2)5是-5的( )(3)与互为()(4)-5是( )学生活动:学生讨论.【教法说明】对概念的理解不是单纯地强调,根据学生判断的结果加深对“互为”的理解,提高学生全面分析问题的能力.师:0的是0.(出示投影2)1.在前面画的数轴上任意标出4个数,并标出它们的.2.分别说出9,-7,0,-0.2的.3.指出-2.4,-1.7,1各是什么数的?4.的是什么?学生活动:1题同桌互相订正,2、3题抢答.【
8、教法说明】1题注意培养学生运用数形结合的方法理解的概念,让学生深知:在数轴上,原点两旁,离开原点相等距离的两个点,所表示的两个数互为.2、3、4题是对的概念的直接运用,由特殊的数到一般的字母,紧扣“只有符号不同的两数即互为”这一概念,又得出一个非常代数性的结论“的是.”板书a的是-a.师:的是,可表示任意数正数、负数、0,求任意一个数的就可以在这个数前加一个“-”号.提出问题:若把分别换成+5,-7,0时,这些数的怎样表示?.提出问题:前面加“-”号表示的,-(+1.1)表示什么?-(-7)呢,-(-9.8)呢?它们的结果应是多少?学生活动:讨论、分析、回答.【教法说明】利用的概念化简符号是这
9、节课的难点.这一环节,紧紧抓住学生的心理及时提问:“既然的是,那么+5,7,0的怎样表示呢?”学生的思维由一般再引到特殊能答出-(+巩固练习(出示投影3)1.是_的,.2.是_的,.3.是_的,.4.是_的,.学生活动:思考后口答.学生回答后教师引导:在一个数前面加上“-”号表示求这个数的,如果在这些数前面加上“+”号呢?板书如:学生回答:在一个数前面加上“+”仍表示这个数,“+”号可省略.并答出以上式子的结果.【教法说明】根据以上题目学生对一数前面加“-”号表示这数的和一数前面加“+”号表示这数本身都已非常熟悉,这时可根据做题情况要学生及时分析观察规律的存在,这样可以从学生思维的不同角度,指
10、引学生解决问题,并同时也暗示学生在做题时不是单纯地演练,一定要注意规律的总结.巩固练习:1.例题2 简化-(+3)-(-4)的符号.2.简化下列各数的符号3.自己编题学生活动:1、2题抢答,3题分组训练.1、2题一定要让学生说明每个式子表示的含义,有助于对概念的理解.3题活跃课堂气氛,同时考查了学生对这一知识的理解掌握程度.(三)归纳小结师:我们这节课学习了,归纳如下:1._的两个数,我们说其中一个是另一个的.2.表示求的_,表示_.学生活动:空中内容由学生填出.【教法说明】通过问题形式归纳出本节的重点.(四)回顾反馈1.-1.6是_的,_的是0.3.2.下列几对数中互为的一对为( ).A.和
11、B.与C.与3.5的是_;的是_;的是_.4.若,则;若,则.5.若是负数,则是_数;若是负数,则是_数.学生活动:分组互相回答,互相讨论,3、4、5题每组出一个同学口答.【教法说明】1,2题是对本节课的重点知识进行复习.3、4、5题是从不同角度考查学生对概念的理解情况,对学有余力的同学是一个提高.八、随堂练习1.填表七年级相反数的教案3教学目标1.使学生理解的意义;2.使学生掌握求一个已知数的;3.培养学生的观察、归纳与概括的能力.教学重点和难点重点:理解的意义,理解的代数定义与几何定义的一致性.难点:多重符号的化简.课堂教学过程 设计一、从学生原有的认知结构提出问题二、师生共同研究的定义特
12、点?引导学生回答:符号不同,一正一负;数字相同.像这样,只有符号不同的两个数,我们说它们互为,如+5与应点有什么特点?引导学生回答:分别在原点的两侧;到原点的距离相等.这样我们也可以说,在数轴上的原点两旁,离开原点距离相等的两个点所表示的数互为.这个概念很重要,它帮助我们直观地看出的意义,所以有的书上又称它为的几何意义.3.0的是0.这是因为0既不是正数,也不是负数,它到原点的距离就是0.这是等于它本身的的数.三、运用举例 变式练习例1 (1)分别写出9与-7的;例1由学生完成.在学习有理数时我们就指出字母可以表示一切有理数,那么数a的如何表示?引导学生观察例1,自己得出结论:数a的是-a,即
13、在一个数前面加上一个负号即是它的.1.当a=7时,-a=-7,7的是-7;2.当-5时,-a=-(-5),读作“-5的”,-5的是5,因此,-(-5)=5.3.当a=0时,-a=-0,0的是0,因此,-0=0.么意思?引导学生回答:-(-8)表示-8的;-(+4)表示+4的;例2 简化-(+3),-(-4),+(-6),+(+5)的符号.能自己总结出简化符号的规律吗?括号外的符号与括号内的符号同号,则简化符号后的数是正数;括号内、外的符号是异号,则简化符号后的数是负数.课堂练习1.填空:(1)+1.3的是_; (2)-3的是_;(5)-(+4)是_的; (6)-(-7)是_的.2.简化下列各数
14、的符号:-(+8),+(-9),-(-6),-(+7),+(+5).3.下列两对数中,哪些是相等的数?哪对互为?-(-8)与+(-8);-(+8)与+(-8).四、小结指导学生阅读教材,并总结本节课学习的主要内容:一是理解的定义代数定义与几何定义;二是求a的;三是简化多重符号的问题.五、作业1.分别写出下列各数的:2.在数轴上标出2,-4.5,0各数与它们的.3.填空:(1)-1.6是_的,_的是-0.2.4.化简下列各数:5.填空:(1)如果a=-13,那么-a=_;(2)如果a=-5.4,那么-a=_;(3)如果-x=-6,那么x=_; (4)如果-x=9,那么x=_.课堂教学设计说明教学
15、过程 是以教学大纲中“重视基础知识的教学、基本技能的训练和能力的培养”,“数学教学中,发展思维能力是培养能力的核心”,“坚持启发式,反对注入式”等规定的精神,结合教材特点,以及学生的学习基础和学习特征而设计的.由于内容较为简单,经过教师适当引导,便可使学生充分参与认知过程.由于“新”知识与有关的“旧”知识的联系较为直接,在教学中则着力引导观察、归纳和概括的过程.探究活动有理数a、b在数轴上的位置如图:将a,-a,b,-b,1,-1用“ ”号排列出来.分析:由图看出,a 1,-1 b 0,|b| 1 |a|.-a,-b分别是a和b的,数轴上表示a和-a,b和-b的点都关于原点对称,它们到原点的距离分别相等,用这个性质在数轴上画出表示-a,-b的点,它们的大小也就排列出来了. p= 解:在数轴上画出表示-a、-b的点:由图看出:-a -1 b -b 1 a. p= 点评:通过数轴,运用数形结合的方法排列三个以上数的大小顺序,经常是解这一类问题的最快捷,准确的方法.七年级相反数的教案第 9 页 共 9 页