《2022最新中考知识点总结数学整理.doc》由会员分享,可在线阅读,更多相关《2022最新中考知识点总结数学整理.doc(4页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。
1、2022最新中考知识点总结数学整理k|越大,(1,k)就越远离x轴,直线与x轴的夹角越大;|k|越小,(1,k)就离x轴越近,直线与x轴的夹角越小;(2)性质:k>0时,y随x增大而增大;k<0时,y随x增大而减小;(3)图象跨越的象限:k>0,b>0经过一、二、三象限;k<0,b>0经过一、二、四象限;k>0,b<0经过一、三、四象限;k<0,b<0经过二、三、四象限。即k>0,一三;k<0,二四;b>0,一二;b<0,三四。(4)直线和的位置关系为:;相交于y轴上;b>0b=0b<0增减性k&g
2、t;0y随着x增大而增大k<0y随着x增大而减小用割补法求面积,基本思想是全面积等于各部分面积之和,在割补时需要注意:尽可能使分割出的三角形的边有一条在坐标轴上,这样表示面积较为方便。坐标平面内图形面积算法:把图形分割或补为底边在坐标轴或平行于坐标轴的直线上的三角形、梯形等。求函数的解析式往往运用待定系数法,待定系数法的步骤:(1)设出含待定系数的函数解析式;(2)由已知条件得出关于待定系数的方程(组),解这个方程(组);(3)把系数代回解析式。仔细体会一次函数与一元一次方程及一元一次不等式之间的内在联系:(1)一元一次方程kx+b=y0(y0是已知数)的解就是直线上,y=y0这点的横坐
3、标;(2)一元一次不等式y1kx+by2(y1,y2是已知数,且y1反比例函数的定义及解析式求法:(1)定义:形如(k0,k是常数)的函数叫做反比例函数,其自变量取值范围是x0;(2)解析式求法:应用待定系数法求k值,由于k=xy,故只需要已知函数图象上一点,即求出函数的解析式。中考反比例函数数学知识点1、反比例函数的概念一般地,函数(k是常数,k0)叫做反比例函数。反比例函数的解析式也可以写成的形式。自变量x的取值范围是x0的一切实数,函数的取值范围也是一切非零实数。2、反比例函数的图像反比例函数的图像是双曲线,它有两个分支,这两个分支分别位于第一、三象限,或第二、四象限,它们关于原点对称。
4、由于反比例函数中自变量x0,函数y0,所以,它的图像与x轴、y轴都没有交点,即双曲线的两个分支无限接近坐标轴,但永远达不到坐标轴。3、反比例函数的性质反比例函数k的符号k>0k<0图像yO xyO x性质x的取值范围是x0,y的取值范围是y0;当k>0时,函数图像的两个分支分别在第一、三象限。在每个象限内,y随x 的增大而减小。x的取值范围是x0,y的取值范围是y0;当k<0时,函数图像的两个分支分别在第二、四象限。在每个象限内,y随x 的增大而增大。4、反比例函数解析式的确定确定及诶是的方法仍是待定系数法。由于在反比例函数中,只有一个待定系数,因此只需要一对对应值或图
5、像上的一个点的坐标,即可求出k的值,从而确定其解析式。5、反比例函数的几何意义设是反比例函数图象上任一点,过点P作轴、轴的垂线,垂足为A,则(1)OPA的面积.(2)矩形OAPB的面积。这就是系数的几何意义.并且无论P怎样移动,OPA的面积和矩形OAPB的面积都保持不变。矩形PCEF面积=,平行四边形PDEA面积=中考二次函数数学知识点二次函数二次函数的解析式有三种形式:(1)一般式:(2)顶点式:(3)当抛物线与x轴有交点时,即对应二次好方程有实根和存在时,根据二次三项式的分解因式,二次函数可转化为两根式。如果没有交点,则不能这样表示。注意:抛物线位置由决定.(1)决定抛物线的开口方向开口向
6、上.开口向下.(2)决定抛物线与y轴交点的位置.图象与y轴交点在x轴上方.图象过原点.图象与y轴交点在x轴下方.(3)决定抛物线对称轴的位置(对称轴:)同号对称轴在y轴左侧.对称轴是y轴.异号对称轴在y轴右侧.(4)顶点坐标.(5)决定抛物线与x轴的交点情况.、>0抛物线与x轴有两个不同交点.=0抛物线与x轴有的公共点(相切).<0抛物线与x轴无公共点.(6)二次函数是否具有、最小值由a判断.当a>0时,抛物线有最低点,函数有最小值.当a<0时,抛物线有点,函数有值.(7)的符号的判定:表达式,请代值,对应y值定正负;对称轴,用处多,三种式子相约;轴两侧判,左同右异中为
7、0;1的两侧判,左同右异中为0;-1两侧判,左异右同中为0.(8)函数图象的平移:左右平移变x,左+右-;上下平移变常数项,上+下-;平移结果先知道,反向平移是诀窍;平移方式不知道,通过顶点来寻找。(9)对称:关于x轴对称的解析式为,关于y轴对称的解析式为,关于原点轴对称的解析式为,在顶点处翻折后的解析式为(a相反,定点坐标不变)。(10)结论:二次函数(与x轴只有一个交点二次函数的顶点在x轴上=0;二次函数(的顶点在y轴上二次函数的图象关于y轴对称;二次函数(经过原点,则。(11)二次函数的解析式:一般式:(,用于已知三点。顶点式:,用于已知顶点坐标或最值或对称轴。(3)交点式:,其中、是二次函数与x轴的两个交点的横坐标。若已知对称轴和在x轴上的截距,也可用此式。中考知识点总结数学第 4 页 共 4 页