高中数学 2.3.2-1 两个变量的线性相关(1)课件 新人教A版必修3.ppt

上传人:仙*** 文档编号:18039163 上传时间:2022-05-28 格式:PPT 页数:11 大小:158KB
返回 下载 相关 举报
高中数学 2.3.2-1 两个变量的线性相关(1)课件 新人教A版必修3.ppt_第1页
第1页 / 共11页
高中数学 2.3.2-1 两个变量的线性相关(1)课件 新人教A版必修3.ppt_第2页
第2页 / 共11页
点击查看更多>>
资源描述

《高中数学 2.3.2-1 两个变量的线性相关(1)课件 新人教A版必修3.ppt》由会员分享,可在线阅读,更多相关《高中数学 2.3.2-1 两个变量的线性相关(1)课件 新人教A版必修3.ppt(11页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。

1、2.3.2 两个变量的线性关系.复习引入: 1、前面我们学习了现实生活中存在许多相关、前面我们学习了现实生活中存在许多相关关系:商品销售与广告、粮食生产与施肥量、关系:商品销售与广告、粮食生产与施肥量、人体的脂肪量与年龄等等的相关关系人体的脂肪量与年龄等等的相关关系.2、通过收集大量的数据,进行统计,对数据、通过收集大量的数据,进行统计,对数据分析,找出其中的规律,对其相关关系作出分析,找出其中的规律,对其相关关系作出一定判断一定判断. 3、由于变量之间相关关系的广泛性和不确定、由于变量之间相关关系的广泛性和不确定性,所以样本数据应较大,和有代表性性,所以样本数据应较大,和有代表性.才能对才能

2、对它们之间的关系作出正确的判断它们之间的关系作出正确的判断.探究探究:.年龄脂肪239.52717.83921.24125.9454927.526.35028.25329.65430.25631.45730.8年龄脂肪5833.56035.26134.6如上的一组数据,你能分析人体的脂肪含量与年龄如上的一组数据,你能分析人体的脂肪含量与年龄 之间有怎样的关系吗?之间有怎样的关系吗? 从上表发现,对某个人不一定有此规律,但对很多个体放在从上表发现,对某个人不一定有此规律,但对很多个体放在一起,就体现出一起,就体现出“人体脂肪随年龄增长而增加人体脂肪随年龄增长而增加”这一规律这一规律.而表中各年龄

3、对应的脂肪数是这个年龄而表中各年龄对应的脂肪数是这个年龄 人群的样本平均数人群的样本平均数.我们也可以对它们作统计图、我们也可以对它们作统计图、表,对这两个变量有一个直观上的印象和判断表,对这两个变量有一个直观上的印象和判断. 下面我们以年龄为横轴,下面我们以年龄为横轴,脂肪含量为纵轴建立直脂肪含量为纵轴建立直角坐标系,作出各个点,角坐标系,作出各个点,称该图为称该图为散点图散点图。如图:O202530 35 4045 505560 65年龄脂肪含量510152025303540从刚才的散点图发现:年龄越大,体内脂肪含量越高,点的从刚才的散点图发现:年龄越大,体内脂肪含量越高,点的位置散布在从

4、左下角到右上角的区域。称它们成位置散布在从左下角到右上角的区域。称它们成正相关正相关。但有的两个变量的相关,如下图所示:但有的两个变量的相关,如下图所示:如高原含氧量与海拔高度如高原含氧量与海拔高度的相关关系,海平面以上,的相关关系,海平面以上,海拔高度越高,含氧量越海拔高度越高,含氧量越少。少。 作出散点图发现,它们散作出散点图发现,它们散布在从左上角到右下角的区布在从左上角到右下角的区域内。又如汽车的载重和汽域内。又如汽车的载重和汽车每消耗车每消耗1升汽油所行使的升汽油所行使的平均路程,称它们成平均路程,称它们成负相关负相关.注:可考虑让学生思考书注:可考虑让学生思考书P77的思考的思考.

5、O我们再观察它的图像发现这些点大致分布在一条直线附我们再观察它的图像发现这些点大致分布在一条直线附 近近,像这样,如果散点图中点的分布从整体上看大致在像这样,如果散点图中点的分布从整体上看大致在一条直线附近,我们就称这两个变量之间具有线性相一条直线附近,我们就称这两个变量之间具有线性相 关关系关关系,这条直线叫做回归直线,该直线叫这条直线叫做回归直线,该直线叫回归方程回归方程。 那么,我那么,我们该怎样来求们该怎样来求出这个回归方出这个回归方程?程? 请同学们请同学们展开讨论,能展开讨论,能得出哪些具体得出哪些具体的方案?的方案?202530 35 4045 50 55 60 65年龄脂肪含量

6、0510152025303540. 方案方案1、先画出一条直线,测量出各点与它、先画出一条直线,测量出各点与它的距离,再移动直线,到达一个使距离的和最的距离,再移动直线,到达一个使距离的和最小时,测出它的斜率和截距,得回归方程。小时,测出它的斜率和截距,得回归方程。202530 35 4045 50 55 60 65年龄脂肪含量0510152025303540如图如图 :. 方案方案2、在图中选两点作直线,使直线在图中选两点作直线,使直线两侧两侧 的点的个数基本相同。的点的个数基本相同。 202530 35 4045 50 55 60 65年龄脂肪含量0510152025303540 方案方案

7、3、如果多取几对点,确定多条直线,再如果多取几对点,确定多条直线,再求出这些直线的斜率和截距的平均值作为回归直求出这些直线的斜率和截距的平均值作为回归直线的斜率和截距。而得回归方程。线的斜率和截距。而得回归方程。 如图如图: 我们还可以找到我们还可以找到 更多的方法,但更多的方法,但 这些方法都可行这些方法都可行 吗吗?科学吗?科学吗? 准确吗?怎样的准确吗?怎样的 方法是最好的?方法是最好的?202530 35 4045 50 55 60 65年龄脂肪含量0510152025303540我们把由一个变量的变化我们把由一个变量的变化去推测另一个变量的方法去推测另一个变量的方法称为称为回归方法。回归方法。我们上面给出的几种方案可靠性都不是很强,我们上面给出的几种方案可靠性都不是很强,人们经过长期的实践与研究,已经找到了人们经过长期的实践与研究,已经找到了计算回归方程的斜率与截距的一般公式计算回归方程的斜率与截距的一般公式:xbyaxnxyxnxxxyyxxbniiniiiniiniiiy,)()(1221121以上公式的推导较复杂,故不作推导,但它的原理较为简单:即各点到该直线的距离的平方和最小,这一方法叫最小二乘法。(参看课本P92)练习:书P98A组1、3 作业:P98A组2

展开阅读全文
相关资源
相关搜索

当前位置:首页 > 教育专区 > 小学资料

本站为文档C TO C交易模式,本站只提供存储空间、用户上传的文档直接被用户下载,本站只是中间服务平台,本站所有文档下载所得的收益归上传人(含作者)所有。本站仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。若文档所含内容侵犯了您的版权或隐私,请立即通知淘文阁网,我们立即给予删除!客服QQ:136780468 微信:18945177775 电话:18904686070

工信部备案号:黑ICP备15003705号© 2020-2023 www.taowenge.com 淘文阁