《空间知识点复习.doc》由会员分享,可在线阅读,更多相关《空间知识点复习.doc(13页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。
1、【精品文档】如有侵权,请联系网站删除,仅供学习与交流空间知识点复习.精品文档.庆来学校高中部2011-2012学年下学期复习资料空间几何体的结构、三视图和直观图基础梳理1多面体的结构特征(1)棱柱的侧棱都互相平行,上下底面是全等的多边形(2)棱锥的底面是任意多边形,侧面是有一个公共顶点的三角形(3)棱台可由平行于底面的平面截棱锥得到,其上下底面是相似多边形2旋转体的结构特征(1)圆柱可以由矩形绕一边所在直线旋转一周得到(2)圆锥可以由直角三角形绕一条直角边所在直线旋转一周得到(3)圆台可以由直角梯形绕直角腰所在直线旋转一周或等腰梯形绕上下底面中心所在直线旋转半周得到,也可由平行于底面的平面截圆
2、锥得到(4)球可以由半圆面绕直径旋转一周或圆面绕直径旋转半周得到3空间几何体的三视图空间几何体的三视图是用平行投影得到,这种投影下,与投影面平行的平面图形留下的影子,与平面图形的形状和大小是全等和相等的,三视图包括正视图、侧视图、俯视图4空间几何体的直观图空间几何体的直观图常用斜二测画法来画,基本步骤是:(1)画几何体的底面在已知图形中取互相垂直的x轴、y轴,两轴相交于点O,画直观图时,把它们画成对应的x轴、y轴,两轴相交于点O,且使xOy45或135,已知图形中平行于x轴、y轴的线段,在直观图中平行于x轴、y轴已知图形中平行于x轴的线段,在直观图中长度不变,平行于y轴的线段,长度变为原来的一
3、半(2)画几何体的高在已知图形中过O点作z轴垂直于xOy平面,在直观图中对应的z轴,也垂直于xOy平面,已知图形中平行于z轴的线段,在直观图中仍平行于z轴且长度不变一个规律三视图的长度特征:“长对正,宽相等,高平齐”,即正视图和侧视图一样高,正视图和俯视图一样长,侧视图和俯视图一样宽若相邻两物体的表面相交,表面的交线是它们的分界线,在三视图中,要注意实、虚线的画法 两个概念(1)正棱柱:侧棱垂直于底面的棱柱叫做直棱柱,底面是正多边形的直棱柱叫做正棱柱反之,正棱柱的底面是正多边形,侧棱垂直于底面,侧面是矩形(2)正棱锥:底面是正多边形,顶点在底面的射影是底面正多边形的中心的棱锥叫做正棱锥特别地,
4、各棱均相等的正三棱锥叫正四面体反过来,正棱锥的底面是正多边形,且顶点在底面的射影是底面正多边形的中心例题:1下列说法正确的是()A有两个面平行,其余各面都是四边形的几何体叫棱柱B有两个面平行,其余各面都是平行四边形的几何体叫棱柱C有一个面是多边形,其余各面都是三角形的几何体叫棱锥D棱台各侧棱的延长线交于一点2用任意一个平面截一个几何体,各个截面都是圆面,则这个几何体一定是( C )A圆柱 B圆锥C球体 D圆柱、圆锥、球体的组合体解析当用过高线的平面截圆柱和圆锥时,截面分别为矩形和三角形,只有球满足任意截面都是圆面3某几何体的三视图如图所示,则它的体积是()A8 B8C82 D.解析圆锥的底面半
5、径为1,高为2,该几何体体积为正方体体积减去圆锥体积,即V2221228,正确选项为A.4若某几何体的三视图如图所示,则这个几何体的直观图可以是解析所给选项中,A、C选项的正视图、俯视图不符合,D选项的侧视图不符合,只有选项B符合5一个几何体的三视图如图所示(单位:m)则该几何体的体积为_m3.解析由三视图可知该几何体是组合体,下面是长方体,长、宽、高分别为3、2、1,上面是一个圆锥,底面圆半径为1,高为3,所以该几何体的体积为32136(m3)空间几何体的结构特征【例1】如果四棱锥的四条侧棱都相等,就称它为“等腰四棱锥”,四条侧棱称为它的腰,以下4个命题中,假命题是()A等腰四棱锥的腰与底面
6、所成的角都相等B等腰四棱锥的侧面与底面所成的二面角都相等或互补C等腰四棱锥的底面四边形必存在外接圆D等腰四棱锥的各顶点必在同一球面上审题视点 可借助几何图形进行判断解析如图,等腰四棱锥的侧棱均相等,其侧棱在底面的射影也相等,则其腰与底面所成角相等,即A正确;底面四边形必有一个外接圆,即C正确;在高线上可以找到一个点O,使得该点到四棱锥各个顶点的距离相等,这个点即为外接球的球心,即D正确;但四棱锥的侧面与底面所成角不一定相等或互补(若为正四棱锥则成立)故仅命题B为假命题选B. 三棱柱、四棱柱、正方体、长方体、三棱锥、四棱锥是常见的空间几何体,也是重要的几何模型,有些问题可用上述几何体举特例解决空
7、间几何体的三视图【例2】在一个几何体的三视图中,正视图和俯视图如图所示,则相应的侧视图可以为()审题视点 由正视图和俯视图想到三棱锥和圆锥解析由几何体的正视图和俯视图可知,该几何体应为一个半圆锥和一个有一侧面(与半圆锥的轴截面为同一三角形)垂直于底面的三棱锥的组合体,故其侧视图应为D. (1)空间几何体的三视图是该几何体在三个两两垂直的平面上的正投影,并不是从三个方向看到的该几何体的侧面表示的图形(2)在画三视图时,重叠的线只画一条,能看见的轮廓线和棱用实线表示,挡住的线要画成虚线【训练2】 (2011浙江)若某几何体的三视图如图所示,则这个几何体的直观图可以是()解析A中正视图,俯视图不对,
8、故A错B中正视图,侧视图不对,故B错C中侧视图,俯视图不对,故C错,故选D.空间几何体的表面积与体积基础梳理1柱、锥、台和球的侧面积和体积面积体积圆柱S侧2rhVShr2h圆锥S侧rlVShr2hr2圆台S侧(r1r2)lV(S上S下)h(rrr1r2)h直棱柱S侧ChVSh正棱锥S侧ChVSh正棱台S侧(CC)hV(S上S下)h球S球面4R2VR32.几何体的表面积(1)棱柱、棱锥、棱台的表面积就是各面面积之和(2)圆柱、圆锥、圆台的侧面展开图分别是矩形、扇形、扇环形;它们的表面积等于侧面积与底面面积之和两种方法(1)解与球有关的组合体问题的方法,一种是内切,一种是外接解题时要认真分析图形,
9、明确切点和接点的位置,确定有关元素间的数量关系,并作出合适的截面图,如球内切于正方体,切点为正方体各个面的中心,正方体的棱长等于球的直径;球外接于正方体,正方体的顶点均在球面上,正方体的体对角线长等于球的直径球与旋转体的组合,通常作它们的轴截面进行解题,球与多面体的组合,通过多面体的一条侧棱和球心或“切点”、“接点”作出截面图(2)等积法:等积法包括等面积法和等体积法等积法的前提是几何图形(或几何体)的面积(或体积)通过已知条件可以得到,利用等积法可以用来求解几何图形的高或几何体的高,特别是在求三角形的高和三棱锥的高这一方法回避了具体通过作图得到三角形(或三棱锥)的高,而通过直接计算得到高的数
10、值例题:1圆柱的一个底面积为S,侧面展开图是一个正方形,那么这个圆柱的侧面积是()A4S B2SCS D.S解析设圆柱底面圆的半径为r,高为h,则r ,又h2r2,S圆柱侧(2)24S.2设长方体的长、宽、高分别为2a、a、a,其顶点都在一个球面上,则该球的表面积为()A3a2 B6a2 C12a2 D24a2解析由于长方体的长、宽、高分别为2a、a、a,则长方体的体对角线长为a.又长方体外接球的直径2R等于长方体的体对角线,2Ra.S球4R26a2.3(2011北京)某四面体的三视图如图所示,该四面体四个面的面积中最大的是A8 B6C10 D8解析由三视图可知,该几何体的四个面都是直角三角形
11、,面积分别为6,6,8,10,所以面积最大的是10,故选择C.4(2011湖南)设右图是某几何体的三视图,则该几何体的体积为()A.12 B.18C942 D3618解析该几何体是由一个球与一个长方体组成的组合体,球的直径为3,长方体的底面是边长为3的正方形,高为2,故所求体积为232318.5若一个球的体积为4,则它的表面积为_解析VR34,R,S4R24312.几何体的表面积【例1】一个空间几何体的三视图如图所示,则该几何体的表面积为A48 B328C488 D80审题视点 由三视图还原几何体,把图中的数据转化为几何体的尺寸计算表面积解析换个视角看问题,该几何体可以看成是底面为等腰梯形,高
12、为4的直棱柱,且等腰梯形的两底分别为2,4,高为4,故腰长为,所以该几何体的表面积为488.答案C 以三视图为载体考查几何体的表面积,关键是能够对给出的三视图进行恰当的分析,从三视图中发现几何体中各元素间的位置关系及数量关系几何体的体积【例2】如图,某几何体的正视图(主视图)是平行四边形,侧视图(左视图)和俯视图都是矩形,则该几何体的体积为()A18 B12 C9 D6审题视点 根据三视图还原几何体的形状,根据图中的数据和几何体的体积公式求解解析该几何体为一个斜棱柱,其直观图如图所示,由题知该几何体的底面是边长为3的正方形,高为,故V339.答案C 以三视图为载体考查几何体的体积,解题的关键是
13、根据三视图想象原几何体的形状构成,并从三视图中发现几何体中各元素间的位置关系及数量关系,然后在直观图中求解几何体的展开与折叠【例3】(2012广州模拟)如图1,在直角梯形ABCD中,ADC90,CDAB,AB4,ADCD2,将ADC沿AC折起,使平面ADC平面ABC,得到几何体DABC,如图2所示(1)求证:BC平面ACD;(2)求几何体DABC的体积审题视点 (1)利用线面垂直的判定定理,证明BC垂直于平面ACD内的两条相交线即可;(2)利用体积公式及等体积法证明(1)证明在图中,可得ACBC2,从而AC2BC2AB2,故ACBC,取AC的中点O,连接DO,则DOAC,又平面ADC平面ABC
14、,平面ADC平面ABCAC,DO平面ADC,从而DO平面ABC,DOBC,又ACBC,ACDOO,BC平面ACD.(2)解由(1)可知,BC为三棱锥BACD的高,BC2,SACD2,VBACDSACDBC22,由等体积性可知,几何体DABC的体积为. (1)有关折叠问题,一定要分清折叠前后两图形(折前的平面图形和折叠后的空间图形)各元素间的位置和数量关系,哪些变,哪些不变(2)研究几何体表面上两点的最短距离问题,常选择恰当的母线或棱展开,转化为平面上两点间的最短距离问题空间点、直线、平面之间的位置关系基础梳理1平面的基本性质(1)公理1:如果一条直线上的两点在一个平面内,那么这条直线上所有的点
15、都在这个平面内(2)公理2:经过不在同一条直线上的三点,有且只有一个平面(3)公理3:如果两个平面(不重合的两个平面)有一个公共点,那么它们还有其他公共点,且所有这些公共点的集合是一条过这个公共点的直线推论1:经过一条直线和这条直线外一点,有且只有一个平面推论2:经过两条相交直线,有且只有一个平面推论3:经过两条平行直线,有且只有一个平面2直线与直线的位置关系(1)位置关系的分类(2)异面直线所成的角定义:设a,b是两条异面直线,经过空间任一点O作直线aa,bb,把a与b所成的锐角或直角叫做异面直线a,b所成的角(或夹角)范围:.3直线与平面的位置关系有平行、相交、在平面内三种情况4平面与平面
16、的位置关系有平行、相交两种情况5平行公理:平行于同一条直线的两条直线互相平行6等角定理:空间中如果两个角的两边分别对应平行,那么这两个角相等或互补两种方法异面直线的判定方法:(1)判定定理:平面外一点A与平面内一点B的连线和平面内不经过该点的直线是异面直线(2)反证法:证明两线不可能平行、相交或证明两线不可能共面,从而可得两线异面三个作用(1)公理1的作用:检验平面;判断直线在平面内;由直线在平面内判断直线上的点在平面内(2)公理2的作用:公理2及其推论给出了确定一个平面或判断“直线共面”的方法(3)公理3的作用:判定两平面相交;作两平面相交的交线;证明多点共线1下列命题是真命题的是()A空间
17、中不同三点确定一个平面B空间中两两相交的三条直线确定一个平面C一条直线和一个点能确定一个平面D梯形一定是平面图形解析空间中不共线的三点确定一个平面,A错;空间中两两相交不交于一点的三条直线确定一个平面,B错;经过直线和直线外一点确定一个平面,C错;故D正确2已知a,b是异面直线,直线c平行于直线a,那么c与b()A一定是异面直线 B一定是相交直线C不可能是平行直线 D不可能是相交直线解析由已知直线c与b可能为异面直线也可能为相交直线,但不可能为平行直线,若bc,则ab,与已知a、b为异面直线相矛盾. 3下列命题中错误的是()A如果平面平面,那么平面内一定存在直线平行于平面B如果平面不垂直于平面
18、,那么平面内一定不存在直线垂直于平面C如果平面平面,平面平面,l,那么l平面D如果平面平面,那么平面内所有直线都垂直于平面解析对于D, 若平面平面,则平面内的直线可能不垂直于平面,甚至可能平行于平面,其余选项均是正确的4如果两条异面直线称为“一对”,那么在正方体的十二条棱中共有异面直线()A12对 B24对 C36对 D48对解析如图所示,与AB异面的直线有B1C1;CC1,A1D1,DD1四条,因为各棱具有相同的位置且正方体共有12条棱,排除两棱的重复计算,共有异面直线24(对)平面的基本性质【例1】正方体ABCDA1B1C1D1中,P、Q、R分别是AB、AD、B1C1的中点,那么,正方体的
19、过P、Q、R的截面图形是()A三角形 B四边形 C五边形 D六边形审题视点 过正方体棱上的点P、Q、R的截面要和正方体的每个面有交线解析如图所示,作RGPQ交C1D1于G,连接QP并延长与CB交于M,连接MR交BB1于E,连接PE、RE为截面的部分外形同理连PQ并延长交CD于N,连接NG交DD1于F,连接QF,FG.截面为六边形PQFGRE. 画几何体的截面,关键是画截面与几何体各面的交线,此交线只需两个公共点即可确定作图时充分利用几何体本身提供的面面平行等条件,可以更快的确定交线的位置异面直线【例2】如图所示,正方体ABCDA1B1C1D1中,M、N分别是A1B1、B1C1的中点问:(1)A
20、M和CN是否是异面直线?说明理由;(2)D1B和CC1是否是异面直线?说明理由审题视点 第(1)问,连结MN,AC,证MNAC,即AM与CN共面;第(2)问可采用反证法解(1)不是异面直线理由如下:连接MN、A1C1、AC.M、N分别是A1B1、B1C1的中点,MNA1C1.又A1A綉C1C,A1ACC1为平行四边形,A1C1AC,MNAC,A、M、N、C在同一平面内,故AM和CN不是异面直线(2)是异面直线证明如下:ABCDA1B1C1D1是正方体,B、C、C1、D1不共面假设D1B与CC1不是异面直线,则存在平面,使D1B平面,CC1平面,D1,B、C、C1,与ABCDA1B1C1D1是正
21、方体矛盾假设不成立,即D1B与CC1是异面直线 证明两直线为异面直线的方法(1)定义法(不易操作)(2)反证法:先假设两条直线不是异面直线,即两直线平行或相交,由假设的条件出发,经过严密的推理,导出矛盾,从而否定假设,肯定两条直线异面异面直线所成的角【例3】正方体ABCDA1B1C1D1中(1)求AC与A1D所成角的大小;(2)若E、F分别为AB、AD的中点,求A1C1与EF所成角的大小审题视点 (1)平移A1D到B1C,找出AC与A1D所成的角,再计算(2)可证A1C1与EF垂直解(1)如图所示,连接AB1,B1C,由ABCDA1B1C1D1是正方体,易知A1DB1C,从而B1C与AC所成的
22、角就是AC与A1D所成的角AB1ACB1C,B1CA60.即A1D与AC所成的角为60.(2)如图所示,连接AC、BD,在正方体ABCDA1B1C1D1中,ACBD,ACA1C1,E、F分别为AB、AD的中点,EFBD,EFAC.EFA1C1.即A1C1与EF所成的角为90. 求异面直线所成的角常采用“平移线段法”,平移的方法一般有三种类型:利用图中已有的平行线平移;利用特殊点(线段的端点或中点)作平行线平移;补形平移计算异面直线所成的角通常放在三角形中进行点共线、点共面、线共点的证明【例4】正方体ABCDA1B1C1D1中,E、F分别是AB和AA1的中点求证:(1)E、C、D1、F四点共面;
23、(2)CE、D1F、DA三线共点审题视点 (1)由EFCD1可得;(2)先证CE与D1F相交于P,再证PAD.证明(1)如图,连接EF,CD1,A1B.E、F分别是AB、AA1的中点,EFBA1.又A1BD1C,EFCD1,E、C、D1、F四点共面(2)EFCD1,EFCD1,CE与D1F必相交,设交点为P,则由PCE,CE平面ABCD,得P平面ABCD.同理P平面ADD1A1.又平面ABCD平面ADD1A1DA,P直线DA,CE、D1F、DA三线共点 要证明点共线或线共点的问题,关键是转化为证明点在直线上,也就是利用平面的基本性质3,即证点在两个平面的交线上或者选择其中两点确定一直线,然后证
24、明另一点也在此直线上直线、平面平行的判定及其性质 基础梳理1平面与平面的位置关系有相交、平行两种情况2直线和平面平行的判定(1)定义:直线和平面没有公共点,则称直线平行于平面;(2)判定定理:a,b,且aba;(3)其他判定方法:;aa.3直线和平面平行的性质定理:a,a,lal.4两个平面平行的判定(1)定义:两个平面没有公共点,称这两个平面平行;(2)判定定理:a,b,abM,a,b;(3)推论:abM,a,b,abM,a,b,aa,bb.5两个平面平行的性质定理(1),aa;(2),a,bab.6与垂直相关的平行的判定(1)a,bab;(2)a,a.一个关系平行问题的转化关系:两个防范(
25、1)在推证线面平行时,一定要强调直线不在平面内,否则,会出现错误(2)把线面平行转化为线线平行时,必须说清经过已知直线的平面与已知平面相交,则直线与交线平行例题:1下面命题中正确的是()若一个平面内有两条直线与另一个平面平行,则这两个平面平行;若一个平面内有无数条直线与另一个平面平行,则这两个平面平行;若一个平面内任何一条直线都平行于另一个平面,则这两个平面平行;若一个平面内的两条相交直线分别与另一个平面平行,则这两个平面平行A B C D解析中两个平面可以相交,是两个平面平行的定义,是两个平面平行的判定定理2平面平面,a,b,则直线a,b的位置关系是()A平行 B相交C异面 D平行或异面3在
26、空间中,下列命题正确的是()A若a,ba,则bB若a,b,a,b,则C若,b,则bD若,a,则a解析若a,ba,则b或b,故A错误;由面面平行的判定定理知,B错误;若,b,则b或b,故C错误4(2012温州模拟)已知m、n为两条不同的直线,、为两个不同的平面,则下列命题中正确的是()Amn,mnB,m,nmnCm,mnnDm,n,m,n解析选项A中,如图,nm,mn一定成立,A正确;选项B中,如图,m,nm与n互为异面直线,B不正确;选项C中,如图,m,mnn,C不正确;选项D中,如图,m,n,m,n与相交,D不正确. 5在正方体ABCDA1B1C1D1中,E是DD1的中点,则BD1与平面AC
27、E的位置关系为_解析如图连接AC、BD交于O点,连结OE,因为OEBD1,而OE平面ACE,BD1平面ACE,所以BD1平面ACE.答案平行如图,在四棱锥PABCD中,底面ABCD为平行四边形,O为AC的中点,M为PD的中点求证:PB平面ACM.审题视点 连接MO,证明PBMO即可证明连接BD,MO.在平行四边形ABCD中,因为O为AC的中点,所以O为BD的中点又M为PD的中点,所以PBMO.因为PB平面ACM,MO平面ACM,所以PB平面ACM. 利用判定定理时关键是找平面内与已知直线平行的直线可先直观判断平面内是否已有,若没有,则需作出该直线,常考虑三角形的中位线、平行四边形的对边或过已知
28、直线作一平面找其交线【训练1】 如图,若PA平面ABCD,四边形ABCD是矩形,E、F分别是AB、PD的中点,求证:AF平面PCE.证明取PC的中点M,连接ME、MF,则FMCD且FMCD.又AECD且AECD,FM綉AE,即四边形AFME是平行四边形AFME,又AF平面PCE,EM平面PCE,AF平面PCE.【例2】如图,在正方体ABCDA1B1C1D1中,M、N、P分别为所在边的中点求证:平面MNP平面A1C1B;审题视点 证明MNA1B,MPC1B.证明连接D1C,则MN为DD1C的中位线,MND1C.又D1CA1B,MNA1B.同理,MPC1B.而MN与MP相交,MN,MP在平面MNP
29、内,A1B,C1B在平面A1C1B内平面MNP平面A1C1B. 证明面面平行的方法有:(1)面面平行的定义;(2)面面平行的判定定理:如果一个平面内有两条相交直线都平行于另一个平面,那么这两个平面平行;(3)利用垂直于同一条直线的两个平面平行;(4)两个平面同时平行于第三个平面,那么这两个平面平行;(5)利用“线线平行”、“线面平行”、“面面平行”的相互转化【训练2】 如图,在三棱柱ABCA1B1C1中,E,F,G,H分别是AB,AC,A1B1,A1C1的中点,求证:(1)B,C,H,G四点共面;(2)平面EFA1平面BCHG.证明(1)GH是A1B1C1的中位线,GHB1C1.又B1C1BC
30、,GHBC,B,C,H,G四点共面(2)E、F分别为AB、AC的中点,EFBC,EF平面BCHG,BC平面BCHG,EF平面BCHG.A1G綉EB,四边形A1EBG是平行四边形,A1EGB.A1E平面BCHG,GB平面BCHG.A1E平面BCHG.A1EEFE,平面EFA1平面BCHG.直线、平面垂直的判定及其性质 基础梳理1直线与平面垂直(1)判定直线和平面垂直的方法定义法利用判定定理:如果一条直线与平面内的两条相交直线垂直,则这条直线与这个平面垂直推论:如果在两条平行直线中,有一条垂直于平面,那么另一条直线也垂直于这个平面(2)直线和平面垂直的性质直线垂直于平面,则垂直于平面内任意直线垂直
31、于同一个平面的两条直线平行垂直于同一直线的两平面平行2斜线和平面所成的角斜线和它在平面内的射影所成的锐角,叫斜线和平面所成的角3平面与平面垂直(1)平面与平面垂直的判定方法定义法利用判定定理:如果一个平面过另一个平面的一条垂线,则这两个平面互相垂直(2)平面与平面垂直的性质如果两平面互相垂直,那么在一个平面内垂直于它们交线的直线垂直于另一个平面一个关系垂直问题的转化关系三类证法(1)证明线线垂直的方法定义:两条直线所成的角为90;平面几何中证明线线垂直的方法;线面垂直的性质:a,bab;线面垂直的性质:a,bab.(2)证明线面垂直的方法线面垂直的定义:a与内任何直线都垂直a;判定定理1:l;
32、判定定理2:ab,ab;面面平行的性质:,aa;面面垂直的性质:,l,a,ala.(3)证明面面垂直的方法利用定义:两个平面相交,所成的二面角是直二面角;判定定理:a,a.例题:1下列条件中,能判定直线l平面的是()Al与平面内的两条直线垂直Bl与平面内无数条直线垂直Cl与平面内的某一条直线垂直Dl与平面内任意一条直线垂直解析由直线与平面垂直的定义,可知D正确2在空间中,下列命题正确的是()A平行直线的平行投影重合B平行于同一直线的两个平面平行C垂直于同一平面的两个平面平行D垂直于同一平面的两条直线平行解析选项A,平行直线的平行投影可以依然是两条平行直线;选项B,两个相交平面的交线与某一条直线
33、平行,则这条直线平行于这两个平面;选项C,两个相交平面可以同时垂直于同一个平面;选项D正确3用a,b,c表示三条不同的直线,表示平面,给出下列命题:若ab,bc,则ac;若ab,bc,则ac;若a,b,则ab;若a,b,则ab. 其中真命题的序号是()A B C D解析由公理4知是真命题在空间内ab,bc,直线a、c的关系不确定,故是假命题4如图,已知PA平面ABC,BCAC,则图中直角三角形的个数为_解析由线面垂直知,图中直角三角形为4个答案4直线与平面垂直的判定与性质【例1】如图,在四棱锥PABCD中,底面ABCD为平行四边形,ADC45,ADAC1,O为AC的中点,PO平面ABCD.证明
34、:AD平面PAC.审题视点 只需证ADAC,再利用线面垂直的判定定理即可证明ADC45,且ADAC1.DAC90,即ADAC,又PO平面ABCD,AD平面ABCD,POAD,而ACPOO,AD平面PAC. (1)证明直线和平面垂直的常用方法有:判定定理;ab,ab;,aa;面面垂直的性质(2)线面垂直的性质,常用来证明线线垂直【训练1】 如图,已知BD平面ABC,MC綉BD,ACBC,N是棱AB的中点求证:CNAD.证明BD平面ABC,CN平面ABC,BDCN.又ACBC,N是AB的中点CNAB.又BDABB,CN平面ABD.而AD平面ABD,CNAD.平面与平面垂直的判定与性质【例2】如图所
35、示,在四棱锥PABCD中,平面PAD平面ABCD,ABDC,PAD是等边三角形,已知BD2AD8,AB2DC4.M是PC上的一点,证明:平面MBD平面PAD.审题视点 证明BD平面PAD,根据已知平面PAD平面ABCD,只要证明BDAD即可证明在ABD中,由于AD4,BD8,AB4,所以AD2BD2AB2.故ADBD.又平面PAD平面ABCD,平面PAD平面ABCDAD,BD平面ABCD,所以BD平面PAD.又BD平面MBD,故平面MBD平面PAD. 面面垂直的关键是线面垂直,线面垂直的证明方法主要有:判定定理法、平行线法(若两条平行线中一条垂直于这个平面,则另一条也垂直于这个平面)、面面垂直
36、性质定理法,本题就是用的面面垂直性质定理法,这种方法是证明线面垂直、作线面角、二面角的一种核心方法【训练2】 如图所示,在长方体ABCDA1B1C1D1中,ABAD1,AA12,M是棱CC1的中点证明:平面ABM平面A1B1M.证明A1B1平面B1C1CB,BM平面B1C1CB,A1B1BM,由已知易得B1M,又BM,B1B2,B1M2BM2B1B2,B1MBM.又A1B1B1MB1,BM平面A1B1M.而BM平面ABM,平面ABM平面A1B1M.平行与垂直关系的综合应用【例3】如图,在四面体ABCD中,CBCD,ADBD,点E、F分别是AB、BD的中点求证:(1)直线EF平面ACD;(2)平
37、面EFC平面BCD.审题视点 第(1)问需证明EFAD;第(2)问需证明BD平面EFC.证明(1)在ABD中,因为E、F分别是AB、BD的中点,所以EFAD.又AD平面ACD,EF平面ACD,所以直线EF平面ACD. (2)在ABD中,因为ADBD,EFAD,所以EFBD.在BCD中,因为CDCB,F为BD的中点,所以CFBD.因为EF平面EFC,CF平面EFC,EF与CF交于点F,所以BD平面EFC.又因为BD平面BCD,所以平面EFC平面BCD. 解答立体几何综合题时,要学会识图、用图与作图图在解题中起着非常重要的作用,空间平行、垂直关系的证明,都与几何体的结构特征相结合,准确识图,灵活利
38、用几何体的结构特征找出平面图形中的线线的平行与垂直关系是证明的关键【训练3】 如图,正方形ABCD和四边形ACEF所在的平面互相垂直,EFAC,AB,CEEF1.(1)求证:AF平面BDE;(2)求证:CF平面BDE. 证明(1)设AC与BD交于点G.因为EFAG,且EF1,AGAC1.所以四边形AGEF为平行四边形,所以AFEG.因为EG平面BDE,AF平面BDE,所以AF平面BDE.(2)如图,连接FG.因为EFCG,EFCG1,且CE1,所以四边形CEFG为菱形所以CFEG.因为四边形ABCD为正方形,所以BDAC.又因为平面ACEF平面ABCD,且平面ACEF平面ABCDAC,所以BD
39、平面ACEF. 所以CFBD.又BDEGG.所以CF平面BDE.线面角【例4】如图,四棱锥PABCD的底面是正方形,PD底面ABCD,点E在棱PB上(1)求证:平面AEC平面PDB;(2)当PDAB,且E为PB的中点时,求AE与平面PDB所成的角的大小审题视点 (1)转化为证明AC平面PDB;(2)AE与平面PDB所成的角即为AE与它在平面PDB上的射影所成的角(1)证明四边形ABCD是正方形,ACBD.PD底面ABCD,PDAC.又PDBDD,AC平面PDB.又AC平面AEC,平面AEC平面PDB.(2)解设ACBDO,连接OE.由(1)知,AC平面PDB于点O,AEO为AE与平面PDB所成
40、的角点O、E分别为DB、PB的中点,OEPD,且OEPD.又PD底面ABCD,OE底面ABCD,OEAO.在RtAOE中,OEPDABAO,AEO45.即AE与平面PDB所成的角为45. 求直线与平面所成的角,一般分为两大步:(1)找直线与平面所成的角,即通过找直线在平面上的射影来完成;(2)计算,要把直线与平面所成的角转化到一个三角形中求解【训练4】 如图,已知DC平面ABC,EBDC,ACBCEB2DC2,ACB120,P,Q分别为AE,AB的中点(1)证明:PQ平面ACD;(2)求AD与平面ABE所成角的正弦值(1)证明因为P,Q分别为AE,AB的中点,所以PQEB.又DCEB,因此PQDC,PQ平面ACD,DC平面ACD,从而PQ平面ACD.(2)解如图,连接CQ,DP.因为Q为AB的中点,且ACBC,所以CQAB.因为DC平面ABC,EBDC,所以EB平面ABC.因此CQEB,又ABEBB,故CQ平面ABE.由(1)有PQDC,又PQEBDC,所以四边形CQPD为平行四边形,故DPCQ,因此DP平面ABE,DAP为AD和平面ABE所成的角,在RtDPA中,AD,DP1,sinDAP.因此AD和平面ABE所成角的正弦值为.版权所有:高考资源网()