《空间向量知识点归纳(期末复习).doc》由会员分享,可在线阅读,更多相关《空间向量知识点归纳(期末复习).doc(46页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。
1、Four short words sum up what has lifted most successful individuals above the crowd: a little bit more.-author-date空间向量知识点归纳(期末复习)空间向量知识点归纳(期末复习)空间向量期末复习知识要点:1. 空间向量的概念:在空间,我们把具有大小和方向的量叫做向量。注:(1)向量一般用有向线段表示同向等长的有向线段表示同一或相等的向量。(2)空间的两个向量可用同一平面内的两条有向线段来表示。2. 空间向量的运算。定义:与平面向量运算一样,空间向量的加法、减法与数乘运算如下(如图)。
2、 ;运算律:加法交换律:加法结合律:数乘分配律:3. 共线向量。(1)如果表示空间向量的有向线段所在的直线平行或重合,那么这些向量也叫做共线向量或平行向量,平行于,记作。当我们说向量、共线(或/)时,表示、的有向线段所在的直线可能是同一直线,也可能是平行直线。(2)共线向量定理:空间任意两个向量、(),/存在实数,使。4. 共面向量 (1)定义:一般地,能平移到同一平面内的向量叫做共面向量。说明:空间任意的两向量都是共面的。(2)共面向量定理:如果两个向量不共线,与向量共面的条件是存在实数使。5. 空间向量基本定理:如果三个向量不共面,那么对空间任一向量,存在一个唯一的有序实数组,使。若三向量
3、不共面,我们把叫做空间的一个基底,叫做基向量,空间任意三个不共面的向量都可以构成空间的一个基底。推论:设是不共面的四点,则对空间任一点,都存在唯一的三个有序实数,使。6. 空间向量的数量积。(1)空间向量的夹角及其表示:已知两非零向量,在空间任取一点,作,则叫做向量与的夹角,记作;且规定,显然有;若,则称与互相垂直,记作:。(2)向量的模:设,则有向线段的长度叫做向量的长度或模,记作:。(3)向量的数量积:已知向量,则叫做的数量积,记作,即。(4)空间向量数量积的性质:。(5)空间向量数量积运算律:。(交换律)。(分配律)。7.空间向量的坐标运算: (1).向量的直角坐标运算设,则(1) ;
4、(2) ;(3) (R); (4) ;(2).设A,B,则= .(3).设,则=; .(4) .夹角公式 设,则.(5)异面直线所成角=.(6).直线和平面所成的角的求法如图所示,设直线l的方向向量为e,平面的法向量为n,直线l与平面所成的角为,两向量e与n的夹角为,则有sin |cos |.(7). 二面角的求法(1)如图,AB,CD是二面角 l 的两个面内与棱l垂直的直线,则二面角的大小,(2)如图,n1,n2分别是二面角 l 的两个半平面,的法向量,则二面角的大小n1,n2或n1,n2练习题:1已知a(3,2,5),b(1,x,1)且ab2,则x的值是()A3 B4 C5 D62已知a(
5、2,4,5),b(3,x,y),若ab,则()Ax6,y15 Bx3,yCx3,y15 Dx6,y3已知空间三点A(0,2,3),B(2,1,6),C(1,1,5)若|a|,且a分别与,垂直,则向量a为()A(1,1,1)B(1,1,1)C(1,1,1)或(1,1,1)D(1,1,1)或(1,1,1)4若a(2,3,5),b(3,1,4),则|a2b|_.5如图所示,已知正四面体ABCD中,AEAB,CFCD,则直线DE和BF所成角的余弦值为_4.解析a2b(8,5,13),|a2b|.5.解析因四面体ABCD是正四面体,顶点A在底面BCD内的射影为BCD的垂心,所以有BCDA,ABCD.设正
6、四面体的棱长为4,则()()0041cos 12014cos 1204,BFDE,所以异面直线DE与BF的夹角的余弦值为:cos .6.如图所示,在平行六面体ABCDA1B1C1D1中,设a,b,c,M,N,P分别是AA1,BC,C1D1的中点,试用a,b,c表示以下各向量:(1);(2);(3).解:(1)P是C1D1的中点,aacacb.(2)N是BC的中点,abababc.(3)M是AA1的中点,aabc,又ca,abc.7.已知直三棱柱ABCA1B1C1中,ABC为等腰直角三角形,BAC90,且ABAA1,D,E,F分别为B1A,C1C,BC的中点(1)求证:DE平面ABC;(2)求证
7、:B1F平面AEF.证明:以A为原点,AB,AC,AA1所在直线为x轴,y轴,z轴,建立如图所示的空间直角坐标系Axyz,令ABAA14,则A(0,0,0),E(0,4,2),F(2,2,0),B1(4,0,4),D(2,0,2),A1(0,0,4),(1)(2,4,0),平面ABC的法向量为(0,0,4),0,DE平面ABC,DE平面ABC.(2)(2,2,4),(2,2,2),(2)22(2)(4)(2)0,B1FEF,(2)222(4)00,B1FAF.AFEFF,B1F平面AEF.8.如图所示,在四棱锥PABCD中,PC平面ABCD,PC2,在四边形ABCD中,BC90,AB4,CD1
8、,点M在PB上,PB4PM,PB与平面ABCD成30的角求证:(1)CM平面PAD;(2)平面PAB平面 PAD.证明:以C为坐标原点,CB为x轴,CD为y轴,CP为z轴建立如图所示的空间直角坐标系Cxyz.PC平面ABCD,PBC为PB与平面ABCD所成的角,PBC30,PC2,BC2,PB4,D(0,1,0),B(2,0,0),A(2,4,0),P(0,0,2),M,(0,1,2),(2,3,0),.(1)设n(x,y,z)为平面PAD的一个法向量,由即令y2,得n(,2,1)n2010,n.又CM平面PAD,CM平面PAD.(2)如图,取AP的中点E,连接BE,则E(,2,1),(,2,
9、1)PBAB,BEPA.又(,2,1)(2,3,0)0,.BEDA.又PADAA,BE平面PAD.又BE平面PAB,平面PAB平面PAD.9. 如图,在正方体ABCDA1B1C1D1中,E为AB的中点(1)求直线AD和直线B1C所成角的大小;(2)求证:平面EB1D平面B1CD.解:不妨设正方体的棱长为2个单位长度,以DA,DC,DD1分别为x轴、y轴、z轴,建立如图所示的空间直角坐标系Dxyz.根据已知得:D(0,0,0),A(2,0,0),B(2,2,0),C(0,2,0),B1(2,2,2)(1)(2,0,0),(2,0,2),cos,.直线AD和直线B1C所成角为.(2)证明:取B1D
10、的中点F,得F(1,1,1),连接EF.E为AB的中点,E(2,1,0),(1,0,1),(0,2,0),0,0,EFDC,EFCB1.DCCB1C,EF平面B1CD.又EF平面EB1D,平面EB1D平面B1CD.10 如图,直角梯形ABCD与等腰直角三角形ABE所在的平面互相垂直ABCD,ABBC,AB2CD2BC,EAEB.(1)求证:ABDE;(2)求直线EC与平面ABE所成角的正弦值;(3)线段EA上是否存在点F,使EC平面FBD?若存在,求出;若不存在,请说明理由解:(1)证明:取AB的中点O,连接EO,DO.因为EBEA,所以EOAB.因为四边形ABCD为直角梯形AB2CD2BC,
11、ABBC,所以四边形OBCD为正方形,所以ABOD.因为EODOO,所以AB平面EOD,所以ABED.(2)因为平面ABE平面ABCD,且EOAB,所以EO平面ABCD,所以EOOD.由OB,OD,OE两两垂直,建立如图所示的空间直角坐标系Oxyz.因为三角形EAB为等腰直角三角形,所以OAOBODOE,设OB1,所以O(0,0,0),A(1,0,0),B(1,0,0),C(1,1,0),D(0,1,0),E(0,0,1)所以(1,1,1),平面ABE的一个法向量为(0,1,0)设直线EC与平面ABE所成的角为,所以sin |cos,|,即直线EC与平面ABE所成角的正弦值为.11.(12分)
12、如图,在底面是矩形的四棱锥PABCD中,PA平面ABCD,PAAB2,BC4,E是PD的中点(1)求证:平面PDC平面PAD;(2)求点B到平面PCD的距离21.(1)证明如图,以A为原点,AD、AB、AP所在的直线分别为x轴、y轴、z轴建立空间直角坐标系,则依题意可知A(0,0,0),B(0,2,0),C(4,2,0),D(4,0,0),P(0,0,2)(4,0,2),(0,2,0),(0,0,2)设平面PDC的一个法向量为n(x,y,1),则所以平面PCD的一个法向量为.PA平面ABCD,PAAB,又ABAD,PAADA,AB平面PAD.平面PAD的法向量为(0,2,0)n0,n.平面PD
13、C平面PAD.(2)解由(1)知平面PCD的一个单位法向量为. ,点B到平面PCD的距离为.12 如图所示,在多面体ABCDA1B1C1D1中,上、下两个底面A1B1C1D1和ABCD互相平行,且都是正方形,DD1底面ABCD,AB2A1B12DD12a.(1)求异面直线AB1与DD1所成角的余弦值;(2)已知F是AD的中点,求证:FB1平面BCC1B1;(3)在(2)的条件下,求二面角FCC1B的余弦值解:以D为坐标原点,分别以DA,DC,DD1所在直线为x轴、y轴、z轴建立如图所示的空间直角坐标系Dxyz,则A(2a,0,0),B(2a,2a,0),C(0,2a,0),D1(0,0,a),
14、F(a,0,0),B1(a,a,a),C1(0,a,a)(1)(a,a,a),(0,0,a),|cos,|,异面直线AB1与DD1所成角的余弦值为.(2)证明:(a,a,a),(2a,0,0),(0,a,a),FB1BB1,FB1BC.BB1BCB,FB1平面BCC1B1.(3)由(2)知,为平面BCC1B1的一个法向量设n(x1,y1,z1)为平面FCC1的法向量,(0,a,a),(a,2a,0),得令y11,则n(2,1,1),cos,n,二面角FCC1B为锐角,二面角FCC1B的余弦值为.13 如图, 四棱柱ABCDA1B1C1D1中, 侧棱A1A底面ABCD,ABDC,ABAD,ADC
15、D1,AA1AB2,E为棱AA1的中点(1)证明:B1C1CE; (2)求二面角B1CEC1的正弦值(3)设点M在线段C1E上, 且直线AM与平面ADD1A1所成角的正弦值为,求线段AM的长解:法一:如图,以点A为原点建立空间直角坐标系,依题意得A(0,0,0),B(0,0,2),C(1,0,1),B1(0,2,2),C1(1,2,1),E(0,1,0)(1)证明:易得(1,0,1),(1,1,1),于是0,所以B1C1CE.(2) (1,2,1)设平面B1CE的法向量m(x,y,z),则即消去x,得y2z0,不妨令z1,可得一个法向量为m(3,2,1)由(1)知,B1C1CE,又CC1B1C
16、1,可得B1C1平面CEC1,故(1,0,1)为平面CEC1的一个法向量于是cosm,从而sin m,.所以二面角B1CEC1的正弦值为.(3)(0,1,0),(1,1,1)设(,),01,有(,1,)可取(0,0,2)为平面ADD1A1的一个法向量设为直线AM与平面ADD1A1所成的角,则sin |cos,|.于是,解得,所以AM.法二:(1)证明:因为侧棱CC1底面A1B1C1D1,B1C1平面A1B1C1D1,所以CC1B1C1.经计算可得B1E,B1C1,EC1,从而B1E2B1CEC,所以在B1EC1中,B1C1C1E,又CC1,C1E平面CC1E,CC1C1EC1,所以B1C1平面
17、CC1E.又CE平面CC1E,故B1C1CE.(2)过B1作B1GCE于点G,连接C1G.由(1)知,B1C1CE,故CE平面B1C1G,得CEC1G,所以B1GC1为二面角B1CEC1的平面角在CC1E中,由CEC1E,CC12,可得C1G.在RtB1C1G中,B1G,所以sin B1GC1,即二面角B1CEC1的正弦值为.(3)连接D1E,过点M作MHED1于点H,可得MH平面ADD1A1,连接AH,AM,则MAH为直线AM与平面ADD1A1所成的角设AMx,从而在RtAHM中,有MHx,AHx.在RtC1D1E中,C1D11,ED1,得EHMHx.在AEH中,AEH135,AE1,由AH2AE2EH22AEEHcos 135,得x21x2x,整理得5x22x60,解得x.所以线段AM的长为.-