2.2 一元线性回归.ppt

上传人:阿宝 文档编号:1765368 上传时间:2019-10-25 格式:PPT 页数:29 大小:315.50KB
返回 下载 相关 举报
2.2  一元线性回归.ppt_第1页
第1页 / 共29页
2.2  一元线性回归.ppt_第2页
第2页 / 共29页
点击查看更多>>
资源描述

《2.2 一元线性回归.ppt》由会员分享,可在线阅读,更多相关《2.2 一元线性回归.ppt(29页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。

1、2.2 一元线性回归模型的参数估计,一、一元线性回归模型的基本假设 二、参数的普通最小二乘估计(OLS) 三、参数估计的最大或然法(ML) 四、最小二乘估计量的性质 五、参数估计量的概率分布及随机干 扰项方差的估计,单方程计量经济学模型分为两大类: 线性模型和非线性模型,线性模型中,变量之间的关系呈线性关系非线性模型中,变量之间的关系呈非线性关系,一元线性回归模型:只有一个解释变量,i=1,2,n,Y为被解释变量,X为解释变量,0与1为待估参数, 为随机干扰项,回归分析的主要目的是要通过样本回归函数(模型)SRF尽可能准确地估计总体回归函数(模型)PRF。,估计方法有多种,其种最广泛使用的是普

2、通最小二乘法(ordinary least squares, OLS)。,为保证参数估计量具有良好的性质,通常对模型提出若干基本假设。,注:实际这些假设与所采用的估计方法紧密相关。,一、线性回归模型的基本假设,假设1、解释变量X是确定性变量,不是随机变量; 假设2、随机误差项具有零均值、同方差和不序列相关性: E(i)=0 i=1,2, ,n Var (i)=2 i=1,2, ,n Cov(i, j)=0 ij i,j= 1,2, ,n 假设3、随机误差项与解释变量X之间不相关: Cov(Xi, i)=0 i=1,2, ,n 假设4、服从零均值、同方差、零协方差的正态分布 iN(0, 2 )

3、i=1,2, ,n,1、如果假设1、2满足,则假设3也满足; 2、如果假设4满足,则假设2也满足。,注意:,以上假设也称为线性回归模型的经典假设或高斯(Gauss)假设,满足该假设的线性回归模型,也称为经典线性回归模型(Classical Linear Regression Model, CLRM)。,另外,在进行模型回归时,还有两个暗含的假设:,假设5:随着样本容量的无限增加,解释变量X的样本方差趋于一有限常数。即,假设6:回归模型是正确设定的,假设5旨在排除时间序列数据出现持续上升或下降的变量作为解释变量,因为这类数据不仅使大样本统计推断变得无效,而且往往产生所谓的伪回归问题(spurio

4、us regression problem)。 假设6也被称为模型没有设定偏误(specification error),二、参数的普通最小二乘估计(OLS),给定一组样本观测值(Xi, Yi)(i=1,2,n)要求样本回归函数尽可能好地拟合这组值. 普通最小二乘法(Ordinary least squares, OLS)给出的判断标准是:二者之差的平方和,最小。,方程组(*)称为正规方程组(normal equations)。,记,上述参数估计量可以写成:,称为OLS估计量的离差形式(deviation form)。 由于参数的估计结果是通过最小二乘法得到的,故称为普通最小二乘估计量(ord

5、inary least squares estimators)。,顺便指出 ,记,则有,可得,(*)式也称为样本回归函数的离差形式。,(*),注意: 在计量经济学中,往往以小写字母表示对均值的离差。,三、参数估计的最大或然法(ML),最大或然法(Maximum Likelihood,简称ML),也称最大似然法,是不同于最小二乘法的另一种参数估计方法,是从最大或然原理出发发展起来的其它估计方法的基础。 基本原理: 对于最大或然法,当从模型总体随机抽取n组样本观测值后,最合理的参数估计量应该使得从模型中抽取该n组样本观测值的概率最大。,在满足基本假设条件下,对一元线性回归模型:,随机抽取n组样本观

6、测值(Xi, Yi)(i=1,2,n)。,那么Yi服从如下的正态分布:,于是,Y的概率函数为,(i=1,2,n),假如模型的参数估计量已经求得,为,因为Yi是相互独立的,所以的所有样本观测值的联合概率,也即或然函数(likelihood function)为:,将该或然函数极大化,即可求得到模型参数的极大或然估计量。,由于或然函数的极大化与或然函数的对数的极大化是等价的,所以,取对数或然函数如下:,解得模型的参数估计量为:,可见,在满足一系列基本假设的情况下,模型结构参数的最大或然估计量与普通最小二乘估计量是相同的。,例2.2.1:在上述家庭可支配收入-消费支出例中,对于所抽出的一组样本数,参

7、数估计的计算可通过下面的表2.2.1进行。,因此,由该样本估计的回归方程为:,四、最小二乘估计量的性质,当模型参数估计出后,需考虑参数估计值的精度,即是否能代表总体参数的真值,或者说需考察参数估计量的统计性质。,一个用于考察总体的估计量,可从如下几个方面考察其优劣性: (1)线性性,即它是否是另一随机变量的线性函数; (2)无偏性,即它的均值或期望值是否等于总体的真实值; (3)有效性,即它是否在所有线性无偏估计量中具有最小方差。,(4)渐近无偏性,即样本容量趋于无穷大时,是否它的均值序列趋于总体真值;(5)一致性,即样本容量趋于无穷大时,它是否依概率收敛于总体的真值;(6)渐近有效性,即样本

8、容量趋于无穷大时,是否它在所有的一致估计量中具有最小的渐近方差。,这三个准则也称作估计量的小样本性质。 拥有这类性质的估计量称为最佳线性无偏估计量(best liner unbiased estimator, BLUE)。,当不满足小样本性质时,需进一步考察估计量的大样本或渐近性质:,高斯马尔可夫定理(Gauss-Markov theorem) 在给定经典线性回归的假定下,最小二乘估计量是具有最小方差的线性无偏估计量。,证:,易知,故,同样地,容易得出,(2)证明最小方差性,其中,ci=ki+di,di为不全为零的常数则容易证明,普通最小二乘估计量(ordinary least Squares Estimators)称为最佳线性无偏估计量(best linear unbiased estimator, BLUE),由于最小二乘估计量拥有一个“好”的估计量所应具备的小样本特性,它自然也拥有大样本特性。,五、参数估计量的概率分布及随机干扰项方差的估计,2、随机误差项的方差2的估计,由于随机项i不可观测,只能从i的估计残差ei出发,对总体方差进行估计。,2又称为总体方差。,可以证明,2的最小二乘估计量为,它是关于2的无偏估计量。,在最大或然估计法中,,因此, 2的最大或然估计量不具无偏性,但却具有一致性。,

展开阅读全文
相关资源
相关搜索

当前位置:首页 > 教育专区 > 大学资料

本站为文档C TO C交易模式,本站只提供存储空间、用户上传的文档直接被用户下载,本站只是中间服务平台,本站所有文档下载所得的收益归上传人(含作者)所有。本站仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。若文档所含内容侵犯了您的版权或隐私,请立即通知淘文阁网,我们立即给予删除!客服QQ:136780468 微信:18945177775 电话:18904686070

工信部备案号:黑ICP备15003705号© 2020-2023 www.taowenge.com 淘文阁