《有关一次函数的开放性问题.doc》由会员分享,可在线阅读,更多相关《有关一次函数的开放性问题.doc(3页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。
1、【精品文档】如有侵权,请联系网站删除,仅供学习与交流有关一次函数的开放性问题.精品文档.一次函数的开放性问题 有关一次函数的中考开放性试题,常常涉及利用一次函数性质补充条件、由一次函数的性质确定函数解析式等。在解有关一次函数的开放性试题时,要充分利用一次函数的概念、图象及其性质,运用恰当的策略,并注意分类讨论等数学方法。1. 利用一次函数性质补充条件例1.已知一次函数y=kx+2,请你补充一个条件:_,使y随x的增大而减小。2. 利用一次函数图象的性质写出函数解析式例2 .某一次函数的图象经过点(1,2),且函数y的值随自变量的增大而减小,请写出一个满足上述条件的函数关系式:_。例3 .若一次
2、函数的图象过第一、第三、第四象限,则一次函数的解析式为_(填一个即可)。3. 由不确定的条件写出一次函数解析式例4 .已知直角坐标系内,点P的纵坐标是横坐标的3倍,请写出过点P的一次函数的解析式(至少三个)_。例5. 观察函数图象,并根据所获得的信息回答问题:(1)折线OAB表示某个实际问题的函数图象,请你编写一道符合图象意义的应用题;(2)根据你所给出的应用题,分别指出x轴,y轴所表示的意义,并写出A,B两点的坐标;(3)求出图象AB的函数解析式,并注明自变量x的取值范围.xyOAB一次函数与方案设计问题一次函数是最基本的函数,它与一次方程、一次不等式有密切联系,在实际生活中有广泛的应用。例
3、如,利用一次函数等有关知识可以在某些经济活动中作出具体的方案决策。近几年来一些省市的中考或竞赛试题中出现了这方面的应用题,这些试题新颖灵活,具有较强的时代气息和很强的选拔功能。1生产方案的设计例1 某工厂现有甲种原料360千克,乙种原料290千克,计划利用这两种原料生产A、B两种产品,共50件。已知生产一件A种产品需用甲种原料9千克、乙种原料3千克,可获利润700元;生产一件B种产品,需用甲种原料4千克、乙种原料10千克,可获利润1200元。(1)要求安排A、B两种产品的生产件数,有哪几种方案?请你设计出来;(2)生产A、B两种产品获总利润是y(元),其中一种的生产件数是x,试写出y与x之间的
4、函数关系式,并利用函数的性质说明(1)中的哪种生产方案获总利润最大?最大利润是多少? 2.调运方案设计例2 北京某厂和上海某厂同时制成电子计算机若干台,北京厂可支援外地10台,上海厂可支援外地4台,现在决定给重庆8台,汉口6台。如果从北京运往汉口、重庆的运费分别是4百元/台、8百元/台,从上海运往汉口、重庆的运费分别是3百元/台、5百元/台。求:(1)若总运费为8400元,上海运往汉口应是多少台?(2)若要求总运费不超过8200元,共有几种调运方案?(3)求出总运费最低的调运方案,最低总运费是多少元?3 营销方案的设计例3 某新建商场设有百货部、服装部和家电部三个经营部,共有190名售货员,计
5、划全商场日营业额(指每日卖出商品所收到的总金额)为60万元。由于营业性质不同,分配到三个部的售货员的人数也就不等,根据经验,各类商品每1万元营业额所需售货员人数如表1,每1万元营业额所得利润情况如表2。表1 表2商品每1万元营业额所需人数商品每1万元营业额所得利润百货类5百货类03万元服装类4服装类05万元家电类2家电类02万元商场将计划日营业额分配给三个经营部,设分配给百货部、服装部和家电部的营业额分别为x(万元)、y(万元)、z(万元)(x,y,z都是整数)。(1) 请用含x的代数式分别表示y和z;(2) 若商场预计每日的总利润为C(万元),且C满足19C19.7,问这个商场应怎样分配日营
6、业额给三个经营部?各部应分别安排多少名售货员?4优惠方案的设计例4 某校校长暑假将带领该校市级“三好生”去北京旅游。甲旅行社说:“如果校长买全票一张,则其余学生可享受半价优待。”乙旅行社说:“包括校长在内,全部按全票价的6折(即按全票价的60%收费)优惠。”若全票价为240元。(1)设学生数为x,甲旅行社收费为y甲,乙旅行社收费为y乙,分别计算两家旅行社的收费(建立表达式);(2)当学生数是多少时,两家旅行社的收费一样;(3)就学生数x讨论哪家旅行社更优惠。练习1某童装厂现有甲种布料38米,乙种布料26米,现计划用这两种布料生产L、M两种型号的童装共50套,已知做一套L型号的童装需用甲种布料0
7、.5米,乙种布料1米,可获利45元;做一套M型号的童装需用甲种布料0.9米,乙种布料0.2米,可获利润30元。设生产L型号的童装套数为x,用这批布料生产这两种型号的童装所获利润为y(元)。(1)写出y(元)关于x(套)的函数解析式;并求出自变量x的取值范围;(2)该厂在生产这批童装中,当L型号的童装为多少套时,能使该厂所获的利润最大?最大利润为多少?2A城有化肥200吨,B城有化肥300吨,现要把化肥运往C、D两农村,如果从A城运往C、D两地运费分别是20元/吨与25元/吨,从B城运往C、D两地运费分别是15元/吨与22元/吨,现已知C地需要220吨,D地需要280吨,如果个体户承包了这项运输
8、任务,请帮他算一算,怎样调运花钱最小?3下表所示为装运甲、乙、丙三种蔬菜的重量及利润。某汽车运输公司计划装运甲、乙、丙三种蔬菜到外地销售(每辆汽车按规定满载,并且每辆汽车只装一种蔬菜)甲乙丙每辆汽车能装的吨数2115每吨蔬菜可获利润(百元)574 (1)若用8辆汽车装运乙、丙两种蔬菜11吨到A地销售,问装运乙、丙两种蔬菜的汽车各多少辆?(2)公司计划用20辆汽车装运甲、乙、丙三种蔬菜36吨到B地销售(每种蔬菜不少于一车),如何安排装运,可使公司获得最大利润?最大利润是多少?4有批货物,若年初出售可获利2000元,然后将本利一起存入银行。银行利息为10%,若年末出售,可获利2620元,但要支付120元仓库保管费,问这批货物是年初还是年末出售为好?