《数学建模浅谈层次分析法.doc》由会员分享,可在线阅读,更多相关《数学建模浅谈层次分析法.doc(11页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。
1、【精品文档】如有侵权,请联系网站删除,仅供学习与交流数学建模浅谈层次分析法.精品文档.浅谈层次分析法摘 要本文主要阐述层次分析法的定义、特点、基本步骤以及它的优缺点。层次分析法是在对复杂的决策问题的本质、影响因素及其内在关系等进行深入分析的基础上,利用较少的定量信息使决策的思维过程数学化,从而为多目标、多准则或无结构特性的复杂决策问题提供简便的决策方法。由于它在处理复杂的决策问题上的实用性和有效性,很快在世界范围内得到重视。它的应用已遍及经济计划和管理、能源政策和分配、行为科学、军事指挥、运输、农业、教育、人才、医疗和环境等领域。关键词: 层次分析 多目标 多准则 成对比较 一致性检验前 言数
2、学是一切科学和技术的基础,是研究现实世界数量关系、空间形式的科学。随着社会的发展,电子计算机的出现和不断完善,数学不但运用于自然科学各学科、各领域,而且渗透到经济、管理以至于社会科学和社会活动的各领域。众所周知,利用数学解决实际问题,首先要建立数学模型,然后才能在该模型的基础上对实际问题进行分析、计算和研究。数学建模(Mathematical Modeling)活动是讨论建立数学模型和解决实际问题的全过程,是一种数学思维方式。从学术的角度来讲,数学建模就是利用数学技术去解决实际问题;从价值的角度来讲,数学建模是一个思维过程,它是一个解决问题的过程(创新),更是一个升华理论方法的过程(总结);从
3、哲学的角度来讲,数学建模是认识世界和改造世界的过程。1 数学建模过程和技巧数学建模的过程是通过对现实问题的简化、假设、抽象,提炼出数学模型;然后运用数学方法和计算机工具等,得到数学上的解答;再把它反馈到现实问题,给出解释、分析,并进行检验。若检验结果符合实际或基本符合,就可以用来指导实践;否则就再假设、再抽象、再修改、再求解、再应用。构造数学模型不是一件容易的事,其建模过程和技巧具体主要包括以下步骤: 模型准备在建模前要了解实际问题的背景,明确建模的目的和要求;深入调研,去粗取精,去伪存真,找出主要矛盾;并按要求收集必要的数据。 模型假设在明确目的、掌握资料的基础上,抓住复杂问题的主要矛盾,舍
4、去一些次要因素;对实际问题作出几个适当的假设,使复杂的实际问题得到必要的简化。 建立模型首先根据主要矛盾确定主要变量;然后利用适当的数学工具刻划变量间的关系,从而形成数学模型。模型要尽量简化、不必复杂,以能获得实际问题的满意解为标准。 模型检验建模后要对模型进行分析,用各种方法(主要是数学方法,包括解方程、逻辑推理、稳定性讨论等;同时利用计算机技术、计算技巧)求得数学结果;将所求得的答案返回到实际问题中去,检验其合理性;并反复修改模型的有关内容,使其更切合实际,从而更具有实用性。 模型应用用建立的模型分析、解释已有的现象,并预测未来的发展趋势,以便给人们的决策提供参考。总之,数学建模是一种创造
5、性劳动,数学建模的分析方法和操作途径不可能用一些条条框框规定得十分死板,成功的模型往往是科学与艺术的结晶。一个“好”的数学模型应该具有以下特点:考虑全面,抓住本质;新颖独特,大胆创新;善于检验,结果合理。而模型检验一般包括下列几个方面:稳定性和敏感性分析;统计检验和误差分析;新旧模型的比较;实际可行性检验。2 层次分析法简述层次分析法(Analytic Hierarchy Process简称AHP)是将与决策问题有关的元素分解成目标、准则、方案等层次,在此基础之上进行定性和定量分析的决策方法。该方法是美国运筹学家匹茨堡大学教授萨蒂(Saaty)于本世纪70年代初,在为美国国防部研究根据各个工业
6、部门对国家福利的贡献大小而进行电力分配课题时,应用网络系统理论和多目标综合评价方法,提出的一种层次权重决策分析方法。2.1 层次分析法定义所谓层次分析法,是指将一个复杂的多目标决策问题作为一个系统,将目标分解为多个目标或准则,进而分解为多指标(或准则、约束)的若干层次,通过定性指标模糊量化方法算出层次单排序(权数)和总排序,以作为目标(多指标)、多方案优化决策的系统方法。 2.2 层次分析法的特点层次分析法是在对复杂的决策问题的本质、影响因素及其内在关系等进行深入分析的基础上,利用较少的定量信息使决策的思维过程数学化,从而为多目标、多准则或无结构特性的复杂决策问题提供简便的决策方法。尤其适合于
7、对决策结果难于直接准确计量的场合。 层次分析法是将决策问题按总目标、各层子目标、评价准则直至具体的备择方案的顺序分解为不同的层次结构,然后用求解判断矩阵特征向量的办法,求得每一层次的各元素对上一层次某元素的优先权重,最后再加权和的方法递阶归并各备择方案对总目标的最终权重,此最终权重最大者即为最优方案。这里所谓“优先权重”是一种相对的量度,它表明各备择方案在某一特点的评价准则或子目标下优越程度的相对量度,以及各子目标对上一层目标而言重要程度的相对量度。层次分析法比较适合于具有分层交错评价指标的目标系统,而且目标值又难于定量描述的决策问题。其用法是构造判断矩阵,求出其最大特征值及其所对应的特征向量
8、,归一化后,即为某一层次指标对于上一层次某相关指标的相对重要性权值。2.3 层次分析法的基本步骤2.3.1 建立层次结构模型在深入分析实际问题的基础上,将有关的各个因素按照不同属性自上而下地分解成若干层次,同一层的诸因素从属于上一层的因素或对上层因素有影响,同时又支配下一层的因素或受到下一层因素的作用。最上层为目标层,通常只有1个因素,最下层通常为方案或对象层,中间可以有一个或几个层次,通常为准则或指标层。当准则过多时(譬如多于9个)应进一步分解出子准则层。 2.3.2 构造成对比较阵从层次结构模型的第2层开始,对于从属于(或影响)上一层每个因素的同一层诸因素,用成对比较法和1-9比较尺度构造
9、成对比较阵,直到最下层。 此时,我们要比较从属于(或影响)上一层每个因素的同一层的n个因素对目标Z影响的大小,即要确定这n个因素、对目标Z的相对重要性。我们用两两比较法将各因素“重要性”量化。每次取两个因素与,用正数表示与的重要性之比。由全部结果得到矩阵称为成对比较阵。显然有,0,1i,jn.的取值方法可参考萨蒂的方法。萨蒂引用了数字1、2、9及它们的倒数作为标度,其意义是比 相同 稍重要 重要 很重要 绝对重要 1 3 5 7 9表1在每两个等级之间有一个中间状态,分别取值2,4,6,8.2.3.3 计算权向量并做一致性检验对于每一个成对比较阵计算最大特征根及对应特征向量,利用一致性指标、随
10、机一致性指标和一致性比率做一致性检验。若检验通过,特征向量(归一化后)即为权向量:若不通过,需重新构造成对比较阵。 若对n个决策因素的比较具有逻辑的一致性,则成对比较阵中的元素之间应有关系:.=,1i,j,kn. (1)其实每个因素的重要性都有一个重要性指标。设因素的重要性指标为,则根据表示与的重要性之比,即即是说与的重要性之比乘上与的重要性之比应为与的重要性之比,即.=.=,1i,j,kn.我们称满足(1)的成对比较阵A为一致矩阵。然而实际上由于人的思维活动不可避免地带有主观性和片面性,故所构造出来的成对比较阵A常常不是一致阵。因此,必须对成对比较阵A进行一致性检验。直接对一切可能的i,j,
11、k验证等式(1)是非常繁琐的,故我们一般不采用此方法。设A是一致矩阵。用对应的表示出来,A =由简单的计算可以得到.= n即:n是矩阵A的特征值,其对应的特征向量是.可证明:n阶成对比较阵A是一致阵,当且仅当A的最大特征值.因此,只需计算A的最大特征值就可判断A是否一致阵。如果A不具有一致性,可以证明.而且越大,不一致程度越严重。此时对应的特征向量Y就不能真实反映在目标Z中所占的比重。令将CI作为衡量一个成对比较阵A不一致程度 的标准,称CI为一致性指标。当成对比较阵A的最大特征值稍大于n,这时称A具有满意的一致性。萨蒂提出用平均随机一致性指标RI检验成对比较阵A是否具有满意的一致性。即:对于
12、固定的n,随机构造成对比较阵,其中是从1、2、9及它们的倒数中随机抽取的。这样的一般是不一致的,取充分大的子样得到的最大特征值的平均值,定义对于1-9阶成对比较阵A,萨蒂用大小为100500的子样,对于不同的n算出RI值如下 n 1 2 3 4 5 6 7 8 9 RI 0 0 0.58 0.90 1.12 1.24 1.32 1.41 1.45表2令则CR称为随机一致性比率,可以用CR代替CI作为一致性检验的临界值。当CR0.1时,认为成对比较阵具有满意的一致性,否则就必须重新调整成对比较阵A,直至达到满意的一致性为止。这时计算A的最大特征值对应的特征向量Y(可以证明,适当选择Y可以使其各分
13、量非负),再求得Y的标准化向量(各分量之和为1的特征向量),就可以作为各因素的相对权值。在实践中,也可以采用下述方法计算和相应特征向量的近似值。对成对比较阵,令称为n个因素、的权向量,它反映n个决策对象的优劣、主次等的对比。它们的相对重要性可由权向量U所确定。2.3.4 层次总排序及其一致性检验计算最下层对目标的组合权向量,并根据公式做组合一致性检验,若检验通过,则可按照组合权向量表示的结果进行决策,否则需要重新考虑模型或重新构造那些一致性比率较大的成对比较阵。 下面就一个选拔干部模型进行讨论。假设有三个干部候选人,按选拔干部的五个标准:品德、才能、资历、年龄和群众关系,构成如下的层次分析模型
14、目标层 选 拔 干 部准则层 品 才 资 年 群 众 德 能 历 龄 关方案层 选拔干部层次结构图选拔干部考虑5个条件:品德,才能,资历,年龄及群众关系。某决策人用成对比较法,得到成对比较阵在上述矩阵A中=2,表明品德与才能的重要性之比为2,即决策人认为品德比才能更为重要。对于上述矩阵,。查表得RI=1.12,.这说明A不是一致阵,但A具有满意的一致性,A的不一致程度是可接受的。其对应的权向量为它反映了决策者选拔干部时,视品德条件最重要,其次是才能,再次是群众关系、年龄因素,最后才是资历。要从三个候选人中选一个在总体上最适合所述五个条件的候选人,应该对三个候选人分别比较他们的品德,才能,资历,
15、年龄及群众关系。先成对比较三个候选人的品德,得成对比较阵经计算,的权向量故的不一致程度可接受。可以直观地视为各候选人在品德方面的得分。类似地,分别比较三个侯选人的才能、资历、年龄及群众关系得成对比较阵通过计算知,相应的权向量为它们可分别视为是各候选人的才能分、资历分、年龄分和群众关系分。经检验知的不一致程度均可接受。最后计算各候选人的总得分。的总得分为从计算公式可知,的总得分为实际上是各条件得分,的加权平均。这里的权就是各条件的重要性。同理可得的得分为比较后可得:侯选人是第一干部人选。上述是一个干部选拔模型的完整建模过程,但不同人有不同的模型解决方案,这里仅供参考。3 层次分析法的优缺点3.1
16、 层次分析法的优点3.1.1 系统性的分析方法它把研究对象作为一个系统,按照分解、比较判断、综合的思维方式进行决策,成为继机理分析、统计分析之后发展起来的系统分析的重要工具。系统的思想在于不割断各个因素对结果的影响,而层次分析法中每一层的权重设置最后都会直接或间接影响到结果,而且在每个层次中的每个因素对结果的影响程度都是量化的,非常清晰、明确。这种方法尤其可用于对无结构特性的系统评价以及多目标、多准则、多时期等的系统评价。3.1.2 简洁实用的决策方法它既不单纯追求高深数学,又不片面地注重行为、逻辑、推理,而是把定性方法与定量方法有机地结合起来,使复杂的系统分解,能将人们的思维过程数学化、系统
17、化,便于人们接受,且能把多目标、多准则又难以全部量化处理的决策问题化为多层次单目标问题,通过两两比较确定同一层次元素相对上一层元素的数量关系后,最后进行简单的数学运算。它所需的数据信息较少。它主要是从评价者对所评价问题的本质、要素的理解出发,比一般的定量方法更讲究定性的分析和判断。加之它模拟人们决策过程的思维方式,把判断各要素的相对重要性的步骤留给了大脑,只保留人脑对要素的印象,化为简单的权重进行计算,这便导致它能处理许多用传统的最优化技术无法着手的实际问题。3.2 层次分析法的缺点3.2.1 不能为决策提供新方案它只能从原有方案中选择较优者,而不能为决策者提供解决问题的新方案。当我们自身创造
18、能力不够时,就会造成我们尽管在想出来的众多方案里挑选出最好的一个来,但其效果仍然不是很好。3.2.2 定量数据较少,定性成分多,不易令人信服它是一种带有模拟人脑的决策方式的方法,因此必然带有较多的定性色彩。当一个人应用层次分析法来做决策时,其他人可能就会说:为什么会是这样?能不能用数学方法来解释?如果不可以的话,你凭什么认为你的这个结果是对的?3.2.3 指标过多时,数据统计量大,容易造成权重难以确定要解决较普遍的问题时,指标的选取数量很可能也就随之增加。指标的增加就意味着我们要构造层次更深、数量更多、规模更庞大的判断矩阵,那么我们就需要对更多的指标进行两两比较。由于一般情况下我们对层次分析法
19、的两两比较是用19来说明其相对重要性,如果有越来越多的指标,我们对每两个指标之间的重要程度的判断可能就会出现困难,甚至会对层次单排序和总排序的一致性产生影响,使一致性检验不能通过,也就是说,由于客观事物的复杂性或对事物认识的片面性,通过所构造的判断矩阵求出的特征向量(权值)不一定就是合理的。不能通过就必须调整,但指标数量过多,就会给调整工作带来很大的困难。结束语层次分析法是一种定性和定量相结合的、系统化、层次化的分析方法。由于它在处理复杂的决策问题上的实用性和有效性,很快在世界范围内得到重视。它的应用已遍及经济计划和管理、能源政策和分配、行为科学、军事指挥、运输、农业、教育、人才、医疗和环境等
20、领域。层次分析法的基本思路与人对一个复杂的决策问题的思维、判断过程大体上是一样的。它不仅适用于存在不确定性和主观信息的情况,还允许以合乎逻辑的方式运用经验、洞察力和直觉。如果所选的要素不合理,其含义混淆不清,或要素间的关系不正确,都会降低AHP法的结果质量,甚至导致AHP法决策失败。为保证递阶层次结构的合理性,要做到:1、分解问题时把握主要因素,不漏不多; 2、注意比较元素之间的强度关系,相差太悬殊的元素不能在同一层次比较。谢 辞本论文设计在任治国老师的悉心指导和严格要求下终告完成.在毕业设计期间,任治国老师为我提供了种种专业知识上的指导和一些富于创造性的建议,任老师严谨求实的工作态度令我受益
21、颇深,使我顺利地完成毕业设计.在此向任治国老师表示深深的感谢和崇高的敬意!在临近毕业之际,我还要借此机会向在这三年中给予我诸多教诲和帮助的各位老师表示由衷的谢意,感谢他们三年来的辛勤栽培.所谓不积跬步何以至千里,各位任课老师认真负责,在他们的悉心帮助和支持下,我能够很好的掌握和运用专业知识,并在设计中得以体现,顺利完成毕业论文.同时,在论文写作过程中,我还参考了有关的书籍和论文,在这里一并向有关书籍的作者表示谢意.我还要感谢我的各位室友,在毕业设计的这段时间里,你们给了我很多的启发,提出了很多宝贵的意见,对于你们帮助和支持,在此我表示深深地感谢!参考文献1 刘亚.数学模型在经济学中的应用.商场现代化.2008,(7):3822 姜启源.数学模型.第3版.北京:高等教育出版社,20033 陈国华.数学建模与素质教育.数学的实践与认识,2003,33(2):1101134 袁震东,蒋鲁敏,束金龙.数学建模简明教程.上海:华东师范大学出版社,2001.3