《初中数学八九年级下册《二次函数的实际应用》教案2.doc》由会员分享,可在线阅读,更多相关《初中数学八九年级下册《二次函数的实际应用》教案2.doc(4页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。
1、【精品文档】如有侵权,请联系网站删除,仅供学习与交流初中数学八九年级下册二次函数的实际应用教案2.精品文档.北师大版初中数学八九年级下册二次函数的实际应用教案(2)【教学目标】1、知识与技能:学会把一些简单的实际生活中的二次函数问题抽象转化为数学问题,并能应用二次函数的相关性质解决问题,能进一步熟练掌握二次函数解析式的各种求法。 2、过程与方法:(1)以学生已有的生活经验出发,让学生亲身经历将实际问题抽象成数学模型,并进行解释与应用的过程,进而使学生获得对数学理解的同时,培养学生分析问题和解决问题的能力。(2)通过小组合作探索,获得一些研究问题与合作交流的方法与经验。3、情感态度与价值观:体验
2、函数知识的实际应用价值,感受数学与人类生活的密切联系,从实践动手当中,让学生产生对数学的兴趣,从而培养学生观察和推理能力,体验主动探究的成功快乐。【重点和难点】重点:理解实际问题中的问题背景,弄清问题中相关量的关系,建立适当的数学模型,并把实际问题转化为数学问题。难点:如何把实际问题抽象转化为数学问题。【教学方法】学生在教师创设的情景中以问题为中心进行自主探究。【教学过程】(一)师生协作,探索问题。例1:一位运动员在距篮下4米处跳起投篮,球运行的路线是抛物线,当球运行的水平距离为2.5米时,达到最大高度3.5米,然后准确落入篮圈。已知篮圈中心到地面的距离为3.05米。(1)建立如图所示的直角坐
3、标系,求抛物线的解析式;(2)该运动员身高1.8米,在这次跳投中,球在头顶上方0.25米处出手,问:球出手时,他跳离地面的高度是多少?运用投球时球的运动轨迹、弹道轨迹、跳水时人体的运动轨迹,抛物线形桥孔等设计的二次函数应用问题屡见不鲜。教师与学生共同探讨,解这类问题一般步骤,并总结:(1)建立适当的直角坐标系(若题目中给出,不用重建);(2)根据给定的条件,找出抛物线上已知的点,并写出坐标;(3)利用已知点的坐标,求出抛物线的解析式。当已知三个点的坐标时,可用一般式y=ax2+bx+c求其解析式;当已知顶点坐标为(k,h)和另外一点的坐标时,可用顶点式y=a(x-k)2+h求其解析式。(4)利
4、用抛物线解析式求出与问题相关的点的坐标,从而使问题获解。(二)合作学习,小组汇报练习1:某跳水运动员进行10米跳台跳水训练时,身体(看成一点)在空中的运动路线是如图所示坐标系下经过原点O的一条抛物线(图中标出的数据为已知条件).在跳某个规定动作时,正常情况下,该运动员在空中的最高处距水面米,入水处距池边的距离为4米,运动员在距水面高度为5米以前,必须完成规定的翻腾动作,并调整好入水姿势,否则就会出现失误. (1) 求这条抛物线的解析式;(2) 在某次试跳中,测得运动员在空中的运动路线是(1)中的抛物线,且运动员在空中调整好入水姿势时,距池边的水平距离为米,问此次跳水会不会失误?并通过计算说明理
5、由引导学生自主探究、总结,学会在各种形式中获取有用的信息。(二)百家争鸣,一题多解。例2:一座抛物线型拱桥如图1所示,桥下水面宽度是4m时,拱高是2m。当水面下降1m后,水面宽度是多少?(结果精确到0.1m)图1学生自主分析:由题意知,水面下降的高度和水面的宽度是两个变量,这两个变量之间存在着二次函数关系。要想求出水面下降1m后水面的宽度,需在图1中构建平面直角坐标系,把题设条件转化为抛物线,求出抛物线的函数关系式。图1为横截面示意图,图中线段AB即为水面。解这道题的关键有两点:一是要构建适当的平面直角坐标系。平面直角坐标系是解函数题目的重要工具,这一步是构造与问题相关的数学模式,二是把题设数
6、据转化为抛物线上点的坐标,用待定系数法求出抛物线的函数关系式,得到两个变量之间的具体关系,再根据一个变量的确定值求出另一个变量的对应值。通过合作学习,小组汇报等手段,领悟列函数关系式和利用函数性质解决问题时注意事项。练习2: 如图2,已知一抛物线型大门,其地面宽度AB=18m,一同学站在门内,在离门脚B点1m远的D处,垂直于地面立一根1.7m长的木杆,其顶端恰好顶在抛物线型门上C处,根据这些条件,请你求出该大门的高h。图2(三)自主探究,提炼方法例3:为了美化校园环境,某中学准备在一块空地(如图3,矩形ABCD,AB=10m,BC=20m)上进行绿化中间的一块(图中四边形EFGH)上种花,其他
7、的四块(图中的四个Rt)上铺设草坪,并要求AE=AH=CF=CG那么在满足上述条件的所有设计中,是否存在一种设计,使得四边形EFGH(中间种花的一块)面积最大?若存在,请求出该设计中AE的长和四边形EFGH的面积;若不存在,请说明理由 图3练习3:如图4,在一块三角形区域ABC中,C=90,边AC=8,BC=6,现要在ABC内建造一个矩形水池DEFG,如图的设计方案是使DE在AB上。 求ABC中AB边上的高h;设DG=x,当x取何值时,水池DEFG的面积最大?实际施工时,发现在AB上距B点1.85的M处有一棵大树,问:这棵大树是否位于最大矩形水池的边上? 图4如果在,为保护大树,请设计出另外的
8、方案,使三角形区域中欲建的最大矩形水池能避开大树。 作业1:如图5,一单杠高2.2m,两立柱之间的距离为1.6m,将一根绳子的两端拴于立柱与横杠结合处,绳子自然下垂呈抛物线形状,一身高0.7m的小孩站在离左边立柱0.4m处,其头部刚好触到绳子,求绳子最低点到地面的距离。(答案:0.2m)图5作业2:某地要建造一个圆形喷水池,在水池中央垂直于水面安装一个花形柱子OA,O恰在水面中心,安置在柱子顶端A处的喷头向外喷水,水流在各个方向上沿形状相同的抛物线路径落下,且在过OA的任一平面上,抛物线形状如图所示,如图6建立直角坐标系,水流喷出的高度 y(m)与水平距离x(m)之间的关系式是 .请回答下列问题:1柱子OA的高度为多少米?2喷出的水流距水平面的最大高度是多少米?3若不计其它因素,水池的半径至少要多少米,才能喷出的水流不至于落在池外? 图6作业3:如图,隧道的截面由抛物线和长方形构成。长方形的长是8m,宽是2m,抛物线可以用y-x+4表示。(1)一辆货运卡车高4m,宽2米,它能通过该隧道吗?(2)如果该隧道内设双行道,那么这辆货运卡车是否可以通过?作业4:如图4,有一块铁皮,拱形边缘呈抛物线状,MN=4dm,抛物线顶点处到边MN的距离是4dm,要在铁皮上截下一矩形ABCD,使矩形顶点B、C落在边MN上,A、D落在抛物线上,问这样截下去的矩形铁皮的周长能否等于8dm?