(本科)第二章 测试信号的描述与分析ppt课件.ppt

上传人:春哥&#****71; 文档编号:16398218 上传时间:2022-05-17 格式:PPT 页数:69 大小:4.77MB
返回 下载 相关 举报
(本科)第二章 测试信号的描述与分析ppt课件.ppt_第1页
第1页 / 共69页
(本科)第二章 测试信号的描述与分析ppt课件.ppt_第2页
第2页 / 共69页
点击查看更多>>
资源描述

《(本科)第二章 测试信号的描述与分析ppt课件.ppt》由会员分享,可在线阅读,更多相关《(本科)第二章 测试信号的描述与分析ppt课件.ppt(69页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。

1、课程主讲人:(本科)第二章(本科)第二章 测试信号的描述与分测试信号的描述与分析析ppt课件课件机械工程测试技术机械工程测试技术杭州电子科技大学机械工程学院杭州电子科技大学机械工程学院测试系统的基本特性测试系统的基本特性模拟信号处理模拟信号处理数字信号处理数字信号处理计算机与虚拟仪器测试技术计算机与虚拟仪器测试技术常用传感器常用传感器绪论绪论测试信号的描述与分析测试信号的描述与分析机械工程测试技术机械工程测试技术杭州电子科技大学机械工程学院杭州电子科技大学机械工程学院1.1.信号分类方法信号分类方法 2.2.周期信号与离散频谱周期信号与离散频谱3.3.非周期信号与连续频谱非周期信号与连续频谱4

2、.4.随机信号随机信号5.5.相关分析及其应用相关分析及其应用6.6.功率谱分析及其应用功率谱分析及其应用主要内容主要内容机械工程测试技术机械工程测试技术杭州电子科技大学机械工程学院杭州电子科技大学机械工程学院2.1 2.1 信号的分类与描述信号的分类与描述 在测试工作中,人们往往通过传感器把被研究的物理量在测试工作中,人们往往通过传感器把被研究的物理量转换成相应的电信号,使之便于测量、分析和处理。这个转换成相应的电信号,使之便于测量、分析和处理。这个信号包含着反映被测物理对象的状态或特性的某些有用信信号包含着反映被测物理对象的状态或特性的某些有用信息,它是我们认识被测对象的内在规律,研究各个

3、物理量息,它是我们认识被测对象的内在规律,研究各个物理量之间的相互关系和预测未来发展的重要依据。之间的相互关系和预测未来发展的重要依据。 为便于研究,有必要对信号进行分类。为便于研究,有必要对信号进行分类。 第二章第二章 测试信号的描述与分析测试信号的描述与分析机械工程测试技术机械工程测试技术杭州电子科技大学机械工程学院杭州电子科技大学机械工程学院1 1 从信号的运动规律上分从信号的运动规律上分-确定性信号与非确定性信号;确定性信号与非确定性信号;3 3 从信号的幅值和能量上从信号的幅值和能量上-能量信号与功率信号;能量信号与功率信号;4 4 从分析域上从分析域上-信号的时域描述与频域描述;信

4、号的时域描述与频域描述;2 2 从连续性从连续性-连续时间信号与离散时间信号;连续时间信号与离散时间信号;2.1 2.1 信号的分类与描述信号的分类与描述 第二章第二章 测试信号的描述与分析测试信号的描述与分析机械工程测试技术机械工程测试技术杭州电子科技大学机械工程学院杭州电子科技大学机械工程学院2.1.1 2.1.1 确定性信号与非确定性信号确定性信号与非确定性信号1.1.确定性信号确定性信号 根据被测物理量的性质,将被测信号按其运动规律可分为确定性信号和非确根据被测物理量的性质,将被测信号按其运动规律可分为确定性信号和非确定性信号两大类。定性信号两大类。 确定性信号是指信号随时间的变化规律

5、可以用教学关系式或图表明确定性信号是指信号随时间的变化规律可以用教学关系式或图表明确地表示出来,确定性信号又可分为周期信号和非周期信号,确地表示出来,确定性信号又可分为周期信号和非周期信号,(1)周期信号:)周期信号: 如图如图2-1所示的单自由度振动系统。所示的单自由度振动系统。第二章第二章 测试信号的描述与分析测试信号的描述与分析( )cossinnnx tatbt00cos()nxt式中式中 220 xab取决于初始条件的常数;取决于初始条件的常数; 0barctga 初始相位角;初始相位角; nkm系统的固有频率;系统的固有频率; m质量;质量;tttx002sinsin)(2)非周期

6、信号非周期信号a.准周期信号准周期信号b.瞬变信号瞬变信号0000)(0)(,tettxttxt机械工程测试技术机械工程测试技术杭州电子科技大学机械工程学院杭州电子科技大学机械工程学院2.2.非确定性信号(随机信号)非确定性信号(随机信号) 第二章第二章 测试信号的描述与分析测试信号的描述与分析 非确定性信号具有随机性特点,无法用确定的数学关系式或图表描非确定性信号具有随机性特点,无法用确定的数学关系式或图表描述其关系,更不能观测未来任何瞬时的精确值,只能用概率统计方法由过述其关系,更不能观测未来任何瞬时的精确值,只能用概率统计方法由过去估计未来。若将行驶中的车辆抽象为如图去估计未来。若将行驶

7、中的车辆抽象为如图2-3所示的运动模型,图中表所示的运动模型,图中表示轨道或者路面的不平度,则其集中质量上任一点的测试结果就是一个随示轨道或者路面的不平度,则其集中质量上任一点的测试结果就是一个随机信号,见图机信号,见图2-3。 机械工程测试技术机械工程测试技术杭州电子科技大学机械工程学院杭州电子科技大学机械工程学院2.1.1 2.1.1 确定性信号与非确定性信号确定性信号与非确定性信号 第二章第二章 测试信号的描述与分析测试信号的描述与分析 确定性信号可分为周期信号和非周期信号,而非周期信号确定性信号可分为周期信号和非周期信号,而非周期信号又可分为准周期信号和瞬变信号。随机信号可分为平稳随机

8、信又可分为准周期信号和瞬变信号。随机信号可分为平稳随机信号和非平稳随机信号,而平稳随机信号又可分为各态历经信号号和非平稳随机信号,而平稳随机信号又可分为各态历经信号和非各态历经信号。信号分类如图和非各态历经信号。信号分类如图2-2所示。所示。 机械工程测试技术机械工程测试技术杭州电子科技大学机械工程学院杭州电子科技大学机械工程学院2.1.2 2.1.2 连续信号与离散信号连续信号与离散信号 根据作为独立变量的时间取值是连续的还是离散的,又根据作为独立变量的时间取值是连续的还是离散的,又可把信号分为连续时间信号和离散时间信号,简称连续信号和可把信号分为连续时间信号和离散时间信号,简称连续信号和离

9、散信号,见图离散信号,见图2-4。时间和幅值均为连续的信号又称为模拟。时间和幅值均为连续的信号又称为模拟信号,时间和幅值均为离散的信号则谓之数字信号。信号,时间和幅值均为离散的信号则谓之数字信号。第二章第二章 测试信号的描述与分析测试信号的描述与分析机械工程测试技术机械工程测试技术杭州电子科技大学机械工程学院杭州电子科技大学机械工程学院2.1.3 能量信号和功率信号n能量有限信号能量信号dttx)(221)(1)(2122ttdttxttdttx功率有限信号功率信号机械工程测试技术机械工程测试技术杭州电子科技大学机械工程学院杭州电子科技大学机械工程学院2.1.3 2.1.3 信号的时域描述与频

10、域描述信号的时域描述与频域描述 一般由测试所得的信号都是随时间变化的物理量,而且包一般由测试所得的信号都是随时间变化的物理量,而且包含有复杂的频率成分,常常需要从时域和频域两方面进行描述。含有复杂的频率成分,常常需要从时域和频域两方面进行描述。 第二章第二章 测试信号的描述与分析测试信号的描述与分析,22T T设周期方波信号在一个周期设周期方波信号在一个周期 中中02( )02TAtx tTAt 展开成傅里叶级数为展开成傅里叶级数为 0000141411( )sin(sinsin3sin5)35nAAx tnttttn机械工程测试技术机械工程测试技术杭州电子科技大学机械工程学院杭州电子科技大学

11、机械工程学院2.1.4 2.1.4 信号的时域描述与频域描述信号的时域描述与频域描述 信号的时域描述只能反映信号的波形随时间的变化特征,但不能信号的时域描述只能反映信号的波形随时间的变化特征,但不能明确揭示频率对幅值和相角的影响,而后者往往对分析问题更为重要。明确揭示频率对幅值和相角的影响,而后者往往对分析问题更为重要。从式(从式(2-4)看出,频域描述补充了以上不足,即以频率作为独立变)看出,频域描述补充了以上不足,即以频率作为独立变量建立了与频率之间的函数关系,从而揭示了信号幅值和相位等信息量建立了与频率之间的函数关系,从而揭示了信号幅值和相位等信息随频率变化的特征。随频率变化的特征。频域

12、描述频域描述第二章第二章 测试信号的描述与分析测试信号的描述与分析nn次谐波分量的幅值和相角分别为次谐波分量的幅值和相角分别为422()()(),000AAnanbnnnnn000()()arctg()2nnnb nna n 机械工程测试技术机械工程测试技术杭州电子科技大学机械工程学院杭州电子科技大学机械工程学院周期信号:经过一定时间可以重复出现的信号周期信号:经过一定时间可以重复出现的信号 x ( t ) = x ( t + nT )简单周期信号简单周期信号复杂周期信号复杂周期信号2.2.1 2.2.1 周期信号的定义周期信号的定义2.2 2.2 周期信号与离散频谱周期信号与离散频谱 第二章

13、第二章 测试信号的描述与分析测试信号的描述与分析机械工程测试技术机械工程测试技术杭州电子科技大学机械工程学院杭州电子科技大学机械工程学院2.2.1 2.2.1 周期信号的定义周期信号的定义第二章第二章 测试信号的描述与分析测试信号的描述与分析在工程上常遇到的周期信号中,最典型最有用的是正弦信在工程上常遇到的周期信号中,最典型最有用的是正弦信号。常用下式表示号。常用下式表示 ( )sinsin(2 )x tAtAtn2sin()Atn机械工程测试技术机械工程测试技术杭州电子科技大学机械工程学院杭州电子科技大学机械工程学院2.2.2 2.2.2 周期信号的傅里叶三角级数展开式周期信号的傅里叶三角级

14、数展开式第二章第二章 测试信号的描述与分析测试信号的描述与分析任意周期函数(信号)任意周期函数(信号) 在有限区间在有限区间 上满足狄里赫利(上满足狄里赫利(Dirichlet)条件,即()条件,即(1)连续或只)连续或只有有限个第一类间断点;(有有限个第一类间断点;(2)只有有限个极值点且收敛,)只有有限个极值点且收敛,则函数则函数 可以展开成傅里叶(可以展开成傅里叶(Fourier)级数。傅里叶三)级数。傅里叶三角级数展开式为角级数展开式为( )x t,2 2T T( )x t机械工程测试技术机械工程测试技术杭州电子科技大学机械工程学院杭州电子科技大学机械工程学院傅里叶级数的表达形式:傅里

15、叶级数的表达形式:0001( )(cossin)nnnx taantbnt,.)3 , , 2 , 1(n001( )cos()nnnx taAnt,.)3 , , 2 , 1( n2.2.2 2.2.2 周期信号的傅里叶三角级数展开式周期信号的傅里叶三角级数展开式第二章第二章 测试信号的描述与分析测试信号的描述与分析/210/2/220/2/220/222( );( )cos;( )sin;nnTTTTnTTTnTTnnnbnaax t dtax tntdtbx tntdtAabarctg 00T-,= 2T周期基波频率机械工程测试技术机械工程测试技术杭州电子科技大学机械工程学院杭州电子科技

16、大学机械工程学院2.2.2 2.2.2 周期信号的傅里叶三角级数展开式周期信号的傅里叶三角级数展开式周期信号及其频谱的特点:周期信号及其频谱的特点:第二章第二章 测试信号的描述与分析测试信号的描述与分析 周期信号可由一个常值分量和几个、乃至无限个不同频率周期信号可由一个常值分量和几个、乃至无限个不同频率的谐波迭加而成;的谐波迭加而成;2. 当当 时的谐波,即时的谐波,即 称为基波,角频率称为基波,角频率 称为基频,其余各项统称为高次谐波,依次称为基频,其余各项统称为高次谐波,依次 称称为二次谐波、为二次谐波、 称为三次谐波称为三次谐波; 1n 101cos()At02T202cos(2)At3

17、03cos(3)At3. 幅值幅值 、相角、相角 均为均为 的函数,把的函数,把 图叫幅频谱,图叫幅频谱, 图叫相频谱,统称为频谱。且因图叫相频谱,统称为频谱。且因 是整数序是整数序列,所以列,所以 各频率成分各频率成分 ,都是,都是 的整数倍,的整数倍,是离散变量,故而,与之对应的谱线也是离散的。所有谱线是离散变量,故而,与之对应的谱线也是离散的。所有谱线的集合构成了的集合构成了离散频谱离散频谱。 nAn0nnAn1,2,3,n 0000,2,3,n0机械工程测试技术机械工程测试技术杭州电子科技大学机械工程学院杭州电子科技大学机械工程学院例:方波信号的频谱例:方波信号的频谱n因是奇函数,所以

18、02( )02TAtx tTAt 0000141411( )sin(sinsin3sin5)35nAAx tn ttttn00,0naa20041,3,5,4sind02,4,6,TnAnbAnt tnTn224,arctg2nnnnnnbAAabna单边谱单边谱时域描述时域描述时域描述时域描述频域描述频域描述机械工程测试技术机械工程测试技术杭州电子科技大学机械工程学院杭州电子科技大学机械工程学院2.2.3 2.2.3 周期信号的傅里叶复指数函数展开式周期信号的傅里叶复指数函数展开式第二章第二章 测试信号的描述与分析测试信号的描述与分析根据欧拉(根据欧拉(Euler)公式)公式jcosjsin

19、tettjj1cos(ee)2ttt有有 1sinj(ee)2j tj tt因此,式(因此,式(2-6)可改写为)可改写为00jj0111( )(j)e()e22ntntnnnnnx taabajb机械工程测试技术机械工程测试技术杭州电子科技大学机械工程学院杭州电子科技大学机械工程学院令令 001(j)21(j)2nnnnnncabcabca则则 00jj011( )eentntnnnnx tccc第二章第二章 测试信号的描述与分析测试信号的描述与分析2.2.3 2.2.3 周期信号的傅里叶复指数函数展开式周期信号的傅里叶复指数函数展开式00-jj11eentntnnnncc0j( )e(0,

20、 1,2,)ntnnx tcn0j221( )dTntTncx t etT00jj0111( )(j)e()e22ntntnnnnnx taabajb机械工程测试技术机械工程测试技术杭州电子科技大学机械工程学院杭州电子科技大学机械工程学院2.2.3 2.2.3 周期信号的傅里叶复指数函数展开式周期信号的傅里叶复指数函数展开式第二章第二章 测试信号的描述与分析测试信号的描述与分析在一般情况下在一般情况下 是复数,可以写成是复数,可以写成jjennnRnIncccc式中式中 22221122arctgarctgnnnRnInnnnInnnnRnccccabAcbca 与与 共轭,即共轭,即 ncn

21、c*nnccnc机械工程测试技术机械工程测试技术杭州电子科技大学机械工程学院杭州电子科技大学机械工程学院2.2.3 2.2.3 周期信号的傅里叶复指数函数展开式周期信号的傅里叶复指数函数展开式第二章第二章 测试信号的描述与分析测试信号的描述与分析复指数形式的傅里叶级数有以下特点:复指数形式的傅里叶级数有以下特点:1. 与三角级数比较,用复数形式展开的与三角级数比较,用复数形式展开的 ,因,因 从从0扩扩展到展到+,使得频率范围亦从,使得频率范围亦从0扩展到扩展到+,因此频谱图由单边谱变为双边谱,而幅值则变为单边谱的一半,因此频谱图由单边谱变为双边谱,而幅值则变为单边谱的一半,即且其谱线仍然是离

22、散的。即且其谱线仍然是离散的。频率扩展的原因是引用欧拉公式而频率扩展的原因是引用欧拉公式而自然产生的数学结果,其物理意义自然产生的数学结果,其物理意义是用旋转方向相反的一对共轭向量是用旋转方向相反的一对共轭向量 来描述各个谐波分量,如来描述各个谐波分量,如图图2-12所示。所示。 ( )x tn(,)nnc c机械工程测试技术机械工程测试技术杭州电子科技大学机械工程学院杭州电子科技大学机械工程学院2. 由式(由式(2-18)可见,幅值谱)可见,幅值谱 是的偶函数,故与是的偶函数,故与 纵轴对称;相位谱纵轴对称;相位谱 是是 的奇函数,故与坐标的奇函数,故与坐标原点对称。原点对称。nc0nn0n

23、3. 也可以分别作出实频图也可以分别作出实频图 与虚频图与虚频图 。一般。一般实频谱是偶对称的,虚频谱是奇对称的。实频谱是偶对称的,虚频谱是奇对称的。 nRcnIc第二章第二章 测试信号的描述与分析测试信号的描述与分析2.2.3 2.2.3 周期信号的傅里叶复指数函数展开式周期信号的傅里叶复指数函数展开式机械工程测试技术机械工程测试技术杭州电子科技大学机械工程学院杭州电子科技大学机械工程学院综上所述,还需强调指出周期信号频谱的以下三个重要特点:综上所述,还需强调指出周期信号频谱的以下三个重要特点:1. 离散性离散性 周期信号的频谱是由离散的谱线组成的,每一条谱周期信号的频谱是由离散的谱线组成的

24、,每一条谱线表征一个谐波分量。线表征一个谐波分量。2. 谐波性谐波性 每条谱线只出现在基波频率的整倍数上,不存在非每条谱线只出现在基波频率的整倍数上,不存在非整倍数的频率分量。整倍数的频率分量。3. 收敛性收敛性 各频率分量的谱线高度与对应谐波的幅值成正比,各频率分量的谱线高度与对应谐波的幅值成正比,且随频率的增高其幅值越来越小。且随频率的增高其幅值越来越小。第二章第二章 测试信号的描述与分析测试信号的描述与分析2.2.3 2.2.3 周期信号的傅里叶复指数函数展开式周期信号的傅里叶复指数函数展开式机械工程测试技术机械工程测试技术杭州电子科技大学机械工程学院杭州电子科技大学机械工程学院解 计算

25、傅里叶系数2002( )d2TAcx ttT0j22002211( )ed( )(cosjsin)dTTn tTTncx ttx tn tn t tTT( )x t是偶函数,所以 因为202()sind0TTxtn t t22202021, 3, 5,2( )cosd( 1)1()02, 4, 6,TnnAnAcx tn t tnTnn 00jj221, 3,21( )ee2ntntnnnAAx tcn 222,nnnnAccn 综上所述,还需强调指出周期信号频谱的以下三个重要特点:离散性 周期信号的频谱是由离散的谱线组成的,每一条谱线表征一个谐波分2. 谐波性 每条谱线只出现在基波频率的整倍

26、数上,不存在非整倍数的频率分量。3. 收敛性 各频率分量的谱线高度与对应谐波的幅值成正比,且随频率的增高其幅值越来越小。 双边谱双边谱机械工程测试技术机械工程测试技术杭州电子科技大学机械工程学院杭州电子科技大学机械工程学院2.2.4 2.2.4 周期信号的强度表述周期信号的强度表述周期信号的强度以峰值、绝对均值、有效值和平均功率来表述周期信号的强度以峰值、绝对均值、有效值和平均功率来表述 第二章第二章 测试信号的描述与分析测试信号的描述与分析Fx峰值峰值 是指信号可能出现的最大瞬时幅值,即是指信号可能出现的最大瞬时幅值,即 max( )Fxx t均值均值 是周期信号在一个周期内对时间的平均值,

27、它是信是周期信号在一个周期内对时间的平均值,它是信号的常值分量,即号的常值分量,即x01( )dTxx ttT绝对均值绝对均值 是指周期信号全波整流后是指周期信号全波整流后的均值,即的均值,即 x01( ) dTxx ttT机械工程测试技术机械工程测试技术杭州电子科技大学机械工程学院杭州电子科技大学机械工程学院周期信号的均方根植周期信号的均方根植 称为信号的有效值,即称为信号的有效值,即 rmsx201( )dTrmsxx ttT信号的平均功率信号的平均功率 就是有效值的平方就是有效值的平方均方值,即均方值,即 aP201( )dTaPx ttT第二章第二章 测试信号的描述与分析测试信号的描述

28、与分析2.2.3 2.2.3 周期信号的傅里叶复指数函数展开式周期信号的傅里叶复指数函数展开式机械工程测试技术机械工程测试技术杭州电子科技大学机械工程学院杭州电子科技大学机械工程学院一、准周期信号和瞬变信号一、准周期信号和瞬变信号第二章第二章 测试信号的描述与分析测试信号的描述与分析2.3 2.3 非周期信号与连续频谱非周期信号与连续频谱 凡能用明确的数学关系式描述而无周期性的信号统称为凡能用明确的数学关系式描述而无周期性的信号统称为非周期信号,它包括准周期信号及瞬变信号。非周期信号,它包括准周期信号及瞬变信号。准周期信号准周期信号: :由多个周期信号合成,但各信号频率不成公倍数。如:由多个周

29、期信号合成,但各信号频率不成公倍数。如:x(t) = sin(t)+sin(2.t)x(t) = sin(t)+sin(2.t)准周期信号准周期信号机械工程测试技术机械工程测试技术杭州电子科技大学机械工程学院杭州电子科技大学机械工程学院 如如 x(t)= e-Bt . Asin(2*pi*f*t)瞬变信号瞬变信号一、准周期信号和瞬变信号一、准周期信号和瞬变信号第二章第二章 测试信号的描述与分析测试信号的描述与分析机械工程测试技术机械工程测试技术杭州电子科技大学机械工程学院杭州电子科技大学机械工程学院二、傅里叶变换二、傅里叶变换 对于任意一个非周期信号,都可以看作是当周期信号的重复周期对于任意一

30、个非周期信号,都可以看作是当周期信号的重复周期T趋于无穷大时转化而来的。趋于无穷大时转化而来的。 非周期信号是时间上不会重复出现的信号,一般为时域有限信号,非周期信号是时间上不会重复出现的信号,一般为时域有限信号,具有收敛可积条件,其能量为有限值。这种信号的频域分析手段是傅立具有收敛可积条件,其能量为有限值。这种信号的频域分析手段是傅立叶变换。叶变换。 第二章第二章 测试信号的描述与分析测试信号的描述与分析( )x t在一有限区间上满足狄时赫利条件;在一有限区间上满足狄时赫利条件;积分积分收敛,即收敛,即绝对可积。绝对可积。 ( ) dx ttj1( )( )ed2tXx ttj( )( )e

31、 dtx tX1() ( )( )()( )()XF x tx tFXx tX机械工程测试技术机械工程测试技术杭州电子科技大学机械工程学院杭州电子科技大学机械工程学院二、二、 傅里叶变换傅里叶变换第二章第二章 测试信号的描述与分析测试信号的描述与分析2 fj2( )( )edftX fx ttj2( )( )edftx tx ffj ( )( )( ) j( )( )efRIX fXfX fX f22()()()()()arctg()RIIRXfXfXfXffXf( ) 2( )X fX机械工程测试技术机械工程测试技术杭州电子科技大学机械工程学院杭州电子科技大学机械工程学院0,0( )00te

32、tx tt例例2-4 求指数函数求指数函数的频谱。的频谱。j2(j2)00( )eddj2tftf tX fetetf2jarctg()2222222j(2)(2)(2)ffefff机械工程测试技术机械工程测试技术杭州电子科技大学机械工程学院杭州电子科技大学机械工程学院 求矩形窗函数求矩形窗函数例例2-5 ()Rw t的频谱的频谱12( )02Rtwttj2j2jj221( )( )eded(ee)j2ftftffRRW fw tttf sin()sin ()fc ff sinsinxcxx0sinsinlim1,lim0 xxxxxx)2(f机械工程测试技术机械工程测试技术杭州电子科技大学机

33、械工程学院杭州电子科技大学机械工程学院1.1.对称互易性对称互易性 三、三、 傅里叶变换的基本性质傅里叶变换的基本性质第二章第二章 测试信号的描述与分析测试信号的描述与分析若若 则则()( )xtX f( )()X txf1sin2( )( )02tfx tX fft 0001sin2()( )02fff tX tx fftf机械工程测试技术机械工程测试技术杭州电子科技大学机械工程学院杭州电子科技大学机械工程学院2.奇偶虚实性奇偶虚实性一般 是实变量的复变函数。它可以写成( )X fj2( )( )ed( )cos2jsin2dftX fx ttx tftft tR e ( ) jIm ( )

34、X fX fRe( )( )cos2dX fx tft tIm ( )( )sin2dX fx tft tcos2ftsin2ft是偶函数,是偶函数,是奇函数,所以由上式可知:是奇函数,所以由上式可知: (1) 若若( )x t是实函数是实函数 则则( )X f一般为具有实部和虚部的复函数一般为具有实部和虚部的复函数。 )(Re)(RefXfXIm( )Im()X fXf ( )x t若若 是实偶函数是实偶函数 ( )()x txtIm( )0X f0()Re()2( )cos 2dXfXfx tft t(2) (3)若)若 ( )x t为实奇函数为实奇函数 ( )()x txt Re( )0

35、X f0( )jIm ( )j2( )sin2dX fX fx tft t(4) 若若 ( )x t为虚函数,设为虚函数,设 ( )j ( )x tg t代入式(代入式(2-29) ,结果与上面相反,结果与上面相反机械工程测试技术机械工程测试技术杭州电子科技大学机械工程学院杭州电子科技大学机械工程学院3.线性叠加性线性叠加性()( )xtX f()( )ytY f( )( )( )( )ax tby taX fbY f4. 时间尺度改变特性时间尺度改变特性时间展缩定理时间展缩定理()( )xtX f1()(0)fx ktXkkk时域波形的压缩对应着频域波形的扩展;时域波形的扩展对应着频域波形的

36、压缩。时域波形的压缩对应着频域波形的扩展;时域波形的扩展对应着频域波形的压缩。 机械工程测试技术机械工程测试技术杭州电子科技大学机械工程学院杭州电子科技大学机械工程学院5. 时移特性时移特性 若若 则则6. 频移特性频移特性 若若 则则三、傅里叶变换的基本性质三、傅里叶变换的基本性质第二章第二章 测试信号的描述与分析测试信号的描述与分析()( )xtX f0j20()( )eftxt tX f()( )xtX f0j20( )e()f tx tX ffm7. 微分特性微分特性()( )xtX fd ( )(j2)( )dnnnx tfX ft8. 积分特性积分特性()( )xtX f1( )d

37、( )j2tx ttX ff时移特性对于分析信号在传输过程中是否失真很有用时移特性对于分析信号在传输过程中是否失真很有用 采用调制技术将来自传感器的低频信号的频谱搬移到高频范围,进行放大和远距离传输采用调制技术将来自传感器的低频信号的频谱搬移到高频范围,进行放大和远距离传输如可以将微分方程化为频域上的代数方程如可以将微分方程化为频域上的代数方程机械工程测试技术机械工程测试技术杭州电子科技大学机械工程学院杭州电子科技大学机械工程学院1212( )( )( )()dx tx txx t11( )( )x tX f22( )( )x tXf1212( )( )( )( )x tx tX f X f1

38、212( ) ( )( )( )x t x tX fX f1212( )( )( )()dXfXfX q Xfq q9. 卷积特性(卷积定理)卷积特性(卷积定理)在测试技术与工程振动中,系统在任意激励下的响应就属于时域卷积问题。在一般情况下,卷在测试技术与工程振动中,系统在任意激励下的响应就属于时域卷积问题。在一般情况下,卷积积分是很难计算的,可以利用傅里叶变换来解决,从而使信号分析工作大为简化。故卷积定积积分是很难计算的,可以利用傅里叶变换来解决,从而使信号分析工作大为简化。故卷积定理在信号分析中占有重要地位。理在信号分析中占有重要地位。 机械工程测试技术机械工程测试技术杭州电子科技大学机械

39、工程学院杭州电子科技大学机械工程学院1 1 矩形窗函数的频谱矩形窗函数的频谱四、几种典型信号的频谱四、几种典型信号的频谱第二章第二章 测试信号的描述与分析测试信号的描述与分析作为典型信号之一的矩形窗函数在本章例作为典型信号之一的矩形窗函数在本章例5中已作过讨论,此处不再赘述。中已作过讨论,此处不再赘述。不过不过在时域中若截取信号的一段记录长度,进行频谱分析,则相当于原信在时域中若截取信号的一段记录长度,进行频谱分析,则相当于原信号和矩形窗函数之乘积,因而所得频谱将是原信号的频谱与窗函数频谱之号和矩形窗函数之乘积,因而所得频谱将是原信号的频谱与窗函数频谱之卷积,卷积,它是连续的、频率无限延伸的频

40、谱。除矩形窗函数以外,常见典型它是连续的、频率无限延伸的频谱。除矩形窗函数以外,常见典型信号还有以下几种:信号还有以下几种: 1sin2()( )02tfxtX fft 机械工程测试技术机械工程测试技术杭州电子科技大学机械工程学院杭州电子科技大学机械工程学院2. 2. 单位脉冲函数(单位脉冲函数( 函数)及其频谱函数)及其频谱 (Dirac(Dirac函数)函数)(1) 函数的定义函数的定义有些物理现象需要用一个时间极短,但取值极大的函数模型来描有些物理现象需要用一个时间极短,但取值极大的函数模型来描述,如工程实际中经常遇到的冲击力、电脉冲等,从而引出了脉述,如工程实际中经常遇到的冲击力、电脉

41、冲等,从而引出了脉冲的概念。冲的概念。 函数函数: : 是一个理想函数,是物理不可实现信号是一个理想函数,是物理不可实现信号。,0( )0 ,0ttt 1)(dtt( )d10( )00ttttt0000()d1()0t ttttt ttt001lim( )lim( )S tt机械工程测试技术机械工程测试技术杭州电子科技大学机械工程学院杭州电子科技大学机械工程学院第二章第二章 测试信号的描述与分析测试信号的描述与分析( ) ( )d( ) (0)d(0)( )d(0)t x ttt xt xttx0000() ( )d() ( )dt( )t t x t tt t x tx t(2) 函数的筛

42、选性质(采样性质)函数的筛选性质(采样性质)(3) 函数的卷积特性函数的卷积特性 ( )( )( ) ()d( ) ()d( )x ttxtxtx t ( )()( ) ()d()x tt Txt Tx t T 函数与其他函数卷积示例函数与其他函数卷积示例机械工程测试技术机械工程测试技术杭州电子科技大学机械工程学院杭州电子科技大学机械工程学院第二章第二章 测试信号的描述与分析测试信号的描述与分析(4) 函数的频谱函数的频谱j20( )( )ede1ftftt()1t00j20j20( )11( )()()e()e() ()ftf ttfttff时域频域对称性时移特性频移特性机械工程测试技术机械

43、工程测试技术杭州电子科技大学机械工程学院杭州电子科技大学机械工程学院第二章第二章 测试信号的描述与分析测试信号的描述与分析3. 正、余弦函数的频谱正、余弦函数的频谱正、余弦函数不满足绝对可积的条件,因此不能直接应用式(正、余弦函数不满足绝对可积的条件,因此不能直接应用式(2-29)进)进行傅里叶变换,但通过引入行傅里叶变换,但通过引入 函数,使变换得以进行,从而达到了周期函数,使变换得以进行,从而达到了周期信号的傅里叶级数同非周期信号的傅里叶变换的统一。信号的傅里叶级数同非周期信号的傅里叶变换的统一。00j2j201sin 2j(ee)2f tf tf t00j2j201cos2(e+e)2f

44、 tf tf t0001sin2j()()2f tffff0001cos2()()2f tffff0j20e()f tff00j20j20( )11( )()()e()e() ()ftf ttfttff时域频域对称性时移特性频移特性机械工程测试技术机械工程测试技术杭州电子科技大学机械工程学院杭州电子科技大学机械工程学院四、几种典型信号的频谱四、几种典型信号的频谱4. 4. 周期信号的傅里叶变换周期信号的傅里叶变换 即周期信号的傅里叶变换或频谱密度是由位于基频即周期信号的傅里叶变换或频谱密度是由位于基频 和基频整数倍频率和基频整数倍频率处的一系列脉冲所构成,其脉冲强度等于该周期信号傅里叶级数的系

45、数处的一系列脉冲所构成,其脉冲强度等于该周期信号傅里叶级数的系数Cn 第二章第二章 测试信号的描述与分析测试信号的描述与分析0j2001( )enf tnnx tcfT00j2j2( )eFenf tnf tnnnnX fFcc0( )()nnX fcfnf机械工程测试技术机械工程测试技术杭州电子科技大学机械工程学院杭州电子科技大学机械工程学院5. 5. 周期单位脉冲序列的频谱周期单位脉冲序列的频谱图图2-26 周期单位脉冲序列及其频谱周期单位脉冲序列及其频谱第二章第二章 测试信号的描述与分析测试信号的描述与分析0( )()ng ttnT00j2j201( )eenf tnf tnnng tc

46、T000011( )()()nnnG ffnffTTT0j( )e(0, 1,2,)ntnnx tcn0j2021( )dTntTncx t etT00j20j20( )11( )()()e()e() ()ftf ttft tff时域频域对称性时移特性频移特性机械工程测试技术机械工程测试技术杭州电子科技大学机械工程学院杭州电子科技大学机械工程学院解解 (1) 利用卷积定理求解利用卷积定理求解100( )cos2,( )( )cos2x tf t x tf tf t1001( )()()2Xfffff1001( ) F( )( ) F( )()()2X ffX ffffff001F()F()2f

47、fff(2) 利用傅里叶变换公式求解利用傅里叶变换公式求解)()(21)(21)(212cos)()(00)(2j)(2j2j2j2j2j00000ffFffFdteetfdteeetfdtetftffXtfftfffttftfft例例2-6机械工程测试技术机械工程测试技术杭州电子科技大学机械工程学院杭州电子科技大学机械工程学院一、随机过程及其描述一、随机过程及其描述 随机信号是非确定性信号,不能用确定的数学关系式来描随机信号是非确定性信号,不能用确定的数学关系式来描述,也不能预测它未来任何瞬时的精确值,任一次观测值只代述,也不能预测它未来任何瞬时的精确值,任一次观测值只代表在其变动范围中可能

48、产生的结果之一。对这种随机现象,就表在其变动范围中可能产生的结果之一。对这种随机现象,就单次观测来看似无规则可循,但从大量重复观测的总体结果考单次观测来看似无规则可循,但从大量重复观测的总体结果考察,却呈现出一定的统计规律性。因此,随机现象可以用概率察,却呈现出一定的统计规律性。因此,随机现象可以用概率与统计的方法来描述。与统计的方法来描述。第二章第二章 测试信号的描述与分析测试信号的描述与分析2.4 2.4 随机信号随机信号 机械工程测试技术机械工程测试技术杭州电子科技大学机械工程学院杭州电子科技大学机械工程学院2.4.1 2.4.1 随机过程及其描述随机过程及其描述 机床刀架在相同的切削过

49、程中被测得的一组振动加速机床刀架在相同的切削过程中被测得的一组振动加速度随时间变化的记录曲线。显然在相同试验条件下重复多度随时间变化的记录曲线。显然在相同试验条件下重复多次检测,得到的一系列时间历程记录曲线是不会一样的。次检测,得到的一系列时间历程记录曲线是不会一样的。第二章第二章 测试信号的描述与分析测试信号的描述与分析随机过程随机过程 ( )x t 12()(), (),()Nxtx t x tx tLL集合平均集合平均 1111( )lim( )NxiNitx tN自相关函数自相关函数 111111( ,) lim( ) ()NxxiiNiR t tx t x tN机械工程测试技术机械工

50、程测试技术杭州电子科技大学机械工程学院杭州电子科技大学机械工程学院都随都随 的改变而变化,这样的过程称为非平稳随机过程的改变而变化,这样的过程称为非平稳随机过程。不随不随 的改变而变化,则称为平稳随机过程,的改变而变化,则称为平稳随机过程, 对于平稳随机过程,若任一单个样本函数的时间平均统计特性和整个样对于平稳随机过程,若任一单个样本函数的时间平均统计特性和整个样本函数按集合平均所得的统计特性相一致本函数按集合平均所得的统计特性相一致,则称此类随机过程为各态历经则称此类随机过程为各态历经(或称遍历)过程。(或称遍历)过程。01lim( )diTxiTx ttT01( )lim( ) ()diT

展开阅读全文
相关资源
相关搜索

当前位置:首页 > 教育专区 > 大学资料

本站为文档C TO C交易模式,本站只提供存储空间、用户上传的文档直接被用户下载,本站只是中间服务平台,本站所有文档下载所得的收益归上传人(含作者)所有。本站仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。若文档所含内容侵犯了您的版权或隐私,请立即通知淘文阁网,我们立即给予删除!客服QQ:136780468 微信:18945177775 电话:18904686070

工信部备案号:黑ICP备15003705号© 2020-2023 www.taowenge.com 淘文阁