《高中数学选修2-3精讲精练第一章(共34页).doc》由会员分享,可在线阅读,更多相关《高中数学选修2-3精讲精练第一章(共34页).doc(34页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。
1、精选优质文档-倾情为你奉上第一讲、第二讲、第三讲 排列组合问题联系实际生动有趣,但题型多样,思路灵活,因此解决排列组合问题,首先要认真审题,弄清楚是排列问题、组合问题还是排列与组合综合问题;其次要抓住问题的本质特征,采用合理恰当的方法来处理。教学目标1.进一步理解和应用分步计数原理和分类计数原理。2.掌握解决排列组合问题的常用策略;能运用解题策略解决简单的综合应用题。提高学生解决问题分析问题的能力 3.学会应用数学思想和方法解决排列组合问题.复习巩固1.分类计数原理(加法原理)完成一件事,有类办法,在第1类办法中有种不同的方法,在第2类办法中有种不同的方法,在第类办法中有种不同的方法,那么完成
2、这件事共有:种不同的方法2.分步计数原理(乘法原理)完成一件事,需要分成个步骤,做第1步有种不同的方法,做第2步有种不同的方法,做第步有种不同的方法,那么完成这件事共有:种不同的方法3.分类计数原理分步计数原理区别 分类计数原理方法相互独立,任何一种方法都可以独立地完成这件事。分步计数原理各步相互依存,每步中的方法完成事件的一个阶段,不能完成整个事件解决排列组合综合性问题的一般过程如下:1.认真审题弄清要做什么事2.怎样做才能完成所要做的事,即采取分步还是分类,或是分步与分类同时进行,确定分多少步及多少类。3.确定每一步或每一类是排列问题(有序)还是组合(无序)问题,元素总数是多少及取出多少个
3、元素.4.解决排列组合综合性问题,往往类与步交叉,因此必须掌握一些常用的解题策略一.特殊元素和特殊位置优先策略例1.由0,1,2,3,4,5可以组成多少个没有重复数字五位奇数.解:由于末位和首位有特殊要求,应该优先安排,以免不合要求的元素占了这两个位置. 先排末位共有 然后排首位共有 最后排其它位置共有 由分步计数原理得位置分析法和元素分析法是解决排列组合问题最常用也是最基本的方法,若以元素分析为主,需先安排特殊元素,再处理其它元素.若以位置分析为主,需先满足特殊位置的要求,再处理其它位置。若有多个约束条件,往往是考虑一个约束条件的同时还要兼顾其它条件练习题:7种不同的花种在排成一列的花盆里,
4、若两种葵花不种在中间,也不种在两端的花盆里,问有多少不同的种法?二.相邻元素捆绑策略例2. 7人站成一排 ,其中甲乙相邻且丙丁相邻, 共有多少种不同的排法.解:可先将甲乙两元素捆绑成整体并看成一个复合元素,同时丙丁也看成一个复合元素,再与其它元素进行排列,同时对相邻元素内部进行自排。由分步计数原理可得共有种不同的排法要求某几个元素必须排在一起的问题,可以用捆绑法来解决问题.即将需要相邻的元素合并为一个元素,再与其它元素一起作排列,同时要注意合并元素内部也必须排列.练习题:某人射击8枪,命中4枪,4枪命中恰好有3枪连在一起的情形的不同种数为 20 三.不相邻问题插空策略例3.一个晚会的节目有4个
5、舞蹈,2个相声,3个独唱,舞蹈节目不能连续出场,则节目的出场顺序有多少种?解:分两步进行第一步排2个相声和3个独唱共有种,第二步将4舞蹈插入第一步排好的6个元素中间包含首尾两个空位共有种不同的方法,由分步计数原理,节目的不同顺序共有 种元素相离问题可先把没有位置要求的元素进行排队再把不相邻元素插入中间和两端练习题:某班新年联欢会原定的5个节目已排成节目单,开演前又增加了两个新节目.如果将这两个新节目插入原节目单中,且两个新节目不相邻,那么不同插法的种数为 30四.定序问题倍缩空位插入策略例4.7人排队,其中甲乙丙3人顺序一定共有多少不同的排法解:(倍缩法)对于某几个元素顺序一定的排列问题,可先
6、把这几个元素与其他元素一起进行排列,然后用总排列数除以这几个元素之间的全排列数,则共有不同排法种数是: (空位法)设想有7把椅子让除甲乙丙以外的四人就坐共有种方法,其余的三个位置甲乙丙共有 1种坐法,则共有种方法。 思考:可以先让甲乙丙就坐吗? (插入法)先排甲乙丙三个人,共有1种排法,再把其余4四人依次插入共有 方法定序问题可以用倍缩法,还可转化为占位插空模型处理练习题:10人身高各不相等,排成前后排,每排5人,要求从左至右身高逐渐增加,共有多少排法? 五.重排问题求幂策略例5.把6名实习生分配到7个车间实习,共有多少种不同的分法解:完成此事共分六步:把第一名实习生分配到车间有 7 种分法.
7、把第二名实习生分配到车间也有7种分依此类推,由分步计数原理共有种不同的排法允许重复的排列问题的特点是以元素为研究对象,元素不受位置的约束,可以逐一安排各个元素的位置,一般地n不同的元素没有限制地安排在m个位置上的排列数为种练习题:1 某班新年联欢会原定的5个节目已排成节目单,开演前又增加了两个新节目.如果将这两个节目插入原节目单中,那么不同插法的种数为 42 2. 某8层大楼一楼电梯上来8名乘客人,他们到各自的一层下电梯,下电梯的方法六.环排问题线排策略例6. 8人围桌而坐,共有多少种坐法?解:围桌而坐与坐成一排的不同点在于,坐成圆形没有首尾之分,所以固定一人并从此位置把圆形展成直线其余7人共
8、有(8-1)!种排法即! 一般地,n个不同元素作圆形排列,共有(n-1)!种排法.如果从n个不同元素中取出m个元素作圆形排列共有练习题:6颗颜色不同的钻石,可穿成几种钻石圈 120七.多排问题直排策略例7.8人排成前后两排,每排4人,其中甲乙在前排,丙在后排,共有多少排法解:8人排前后两排,相当于8人坐8把椅子,可以把椅子排成一排.个特殊元素有种,再排后4个位置上的特殊元素丙有种,其余的5人在5个位置上任意排列有种,则共有种一般地,元素分成多排的排列问题,可归结为一排考虑,再分段研究. 练习题:有两排座位,前排11个座位,后排12个座位,现安排2人就座规定前排中间的3个座位不能坐,并且这2人不
9、左右相邻,那么不同排法的种数是 346 八.排列组合混合问题先选后排策略例8.有5个不同的小球,装入4个不同的盒内,每盒至少装一个球,共有多少不同的装法.解:第一步从5个球中选出2个组成复合元共有种方法.再把4个元素(包含一个复合元素)装入4个不同的盒内有种方法,根据分步计数原理装球的方法共有解决排列组合混合问题,先选后排是最基本的指导思想.此法与相邻元素捆绑策略相似吗?练习题:一个班有6名战士,其中正副班长各1人现从中选4人完成四种不同的任务,每人完成一种任务,且正副班长有且只有1人参加,则不同的选法有 192 种九.小集团问题先整体后局部策略例9.用1,2,3,4,5组成没有重复数字的五位
10、数其中恰有两个偶数夹1,在两个奇数之间,这样的五位数有多少个?解:把,当作一个小集团与排队共有种排法,再排小集团内部共有种排法,由分步计数原理共有种排法.小集团排列问题中,先整体后局部,再结合其它策略进行处理。练习题:.计划展出10幅不同的画,其中1幅水彩画,幅油画,幅国画, 排成一行陈列,要求同一 品种的必须连在一起,并且水彩画不在两端,那么共有陈列方式的种数为2. 5男生和女生站成一排照像,男生相邻,女生也相邻的排法有种十.元素相同问题隔板策略例10.有10个运动员名额,分给7个班,每班至少一个,有多少种分配方案? 解:因为10个名额没有差别,把它们排成一排。相邻名额之间形成个空隙。在个空
11、档中选个位置插个隔板,可把名额分成份,对应地分给个班级,每一种插板方法对应一种分法共有种分法。将n个相同的元素分成m份(n,m为正整数),每份至少一个元素,可以用m-1块隔板,插入n个元素排成一排的n-1个空隙中,所有分法数为练习题:1 10个相同的球装5个盒中,每盒至少一有多少装法? 2 .求这个方程组的自然数解的组数 十一.正难则反总体淘汰策略例11.从0,1,2,3,4,5,6,7,8,9这十个数字中取出三个数,使其和为不小于10的偶数,不同的 取法有多少种?解:这问题中如果直接求不小于10的偶数很困难,可用总体淘汰法。这十个数字中有5个偶数5个奇数,所取的三个数含有3个偶数的取法有,只
12、含有1个偶数的取法有,和为偶数的取法共有。再淘汰和小于10的偶数共9种,符合条件的取法共有有些排列组合问题,正面直接考虑比较复杂,而它的反面往往比较简捷,可以先求出它的反面,再从整体中淘汰.练习题:我们班里有43位同学,从中任抽5人,正、副班长、团支部书记至少有一人在内的抽法有多少种?十二.平均分组问题除法策略例12. 6本不同的书平均分成3堆,每堆2本共有多少分法? 解: 分三步取书得种方法,但这里出现重复计数的现象,不妨记6本书为ABCDEF,若第一步取AB,第二步取CD,第三步取EF该分法记为(AB,CD,EF),则中还有(AB,EF,CD),(CD,AB,EF),(CD,EF,AB)(
13、EF,CD,AB),(EF,AB,CD)共有种取法 ,而这些分法仅是(AB,CD,EF)一种分法,故共有种分法。平均分成的组,不管它们的顺序如何,都是一种情况,所以分组后要一定要除以(为均分的组数)避免重复计数。练习题:1 将13个球队分成3组,一组5个队,其它两组4个队, 有多少分法?()2.10名学生分成3组,其中一组4人, 另两组3人但正副班长不能分在同一组,有多少种不同的分组方法 (1540)3.某校高二年级共有六个班级,现从外地转 入4名学生,要安排到该年级的两个班级且每班安排2名,则不同的安排方案种数为_()十三. 合理分类与分步策略例13.在一次演唱会上共10名演员,其中8人能能
14、唱歌,5人会跳舞,现要演出一个2人唱歌2人伴舞的节目,有多少选派方法解:10演员中有5人只会唱歌,2人只会跳舞3人为全能演员。选上唱歌人员为标准进行研究 只会唱的5人中没有人选上唱歌人员共有种,只会唱的5人中只有1人选上唱歌人员种,只会唱的5人中只有2人选上唱歌人员有种,由分类计数原理共有 种。解含有约束条件的排列组合问题,可按元素的性质进行分类,按事件发生的连续过程分步,做到标准明确。分步层次清楚,不重不漏,分类标准一旦确定要贯穿于解题过程的始终。练习题:1.从4名男生和3名女生中选出4人参加某个座 谈会,若这4人中必须既有男生又有女生,则不同的选法共有34 2. 3成人2小孩乘船游玩,1号
15、船最多乘3人, 2号船最多乘2人,3号船只能乘1人,他们任选2只船或3只船,但小孩不能单独乘一只船, 这3人共有多少乘船方法. (27) 本题还有如下分类标准:*以3个全能演员是否选上唱歌人员为标准*以3个全能演员是否选上跳舞人员为标准*以只会跳舞的2人是否选上跳舞人员为标准都可经得到正确结果十四.构造模型策略例14. 马路上有编号为1,2,3,4,5,6,7,8,9的九只路灯,现要关掉其中的3盏,但不能关掉相邻的2盏或3盏,也不能关掉两端的2盏,求满足条件的关灯方法有多少种?解:把此问题当作一个排队模型在6盏亮灯的5个空隙中插入3个不亮的灯有 种一些不易理解的排列组合题如果能转化为非常熟悉的
16、模型,如占位填空模型,排队模型,装盒模型等,可使问题直观解决练习题:某排共有10个座位,若4人就坐,每人左右两边都有空位,那么不同的坐法有多少种?(120)十五.实际操作穷举策略例15.设有编号1,2,3,4,5的五个球和编号1,2,3,4,5的五个盒子,现将5个球投入这五个盒子内,要求每个盒子放一个球,并且恰好有两个球的编号与盒子的编号相同,有多少投法解:从5个球中取出2个与盒子对号有种还剩下3球3盒序号不能对应,利用实际操作法,如果剩下3,4,5号球, 3,4,5号盒3号球装4号盒时,则4,5号球有只有1种装法,同理3号球装5号盒时,4,5号球有也只有1种装法,由分步计数原理有种 3号盒
17、4号盒 5号盒 对于条件比较复杂的排列组合问题,不易用公式进行运算,往往利用穷举法或画出树状图会收到意想不到的结果练习题:1.同一寝室4人,每人写一张贺年卡集中起来,然后每人各拿一张别人的贺年卡,则四张贺年卡不同的分配方式有多少种? (9)2.给图中区域涂色,要求相邻区 域不同色,现有4种可选颜色,则不同的着色方法有 72种十六. 分解与合成策略例16. 30030能被多少个不同的偶数整除分析:先把30030分解成质因数的乘积形式30030=235 7 1113依题意可知偶因数必先取2,再从其余5个因数中任取若干个组成乘积,所有的偶因数为:练习:正方体的8个顶点可连成多少对异面直线解:我们先从
18、8个顶点中任取4个顶点构成四体共有体共,每个四面体有分解与合成策略是排列组合问题的一种最基本的解题策略,把一个复杂问题分解成几个小问题逐一解决,然后依据问题分解后的结构,用分类计数原理和分步计数原理将问题合成,从而得到问题的答案 ,每个比较复杂的问题都要用到这种解题策略3对异面直线,正方体中的8个顶点可连成对异面直线十七.化归策略例17. 25人排成55方阵,现从中选3人,要求3人不在同一行也不在同一列,不同的选法有多少种?解:将这个问题退化成9人排成33方阵,现从中选3人,要求3人不在同一行也不在同一列,有多少选法.这样每行必有1人从其中的一行中选取1人后,把这人所在的行列都划掉,如此继续下
19、去.从33方队中选3人的方法有种。再从55方阵选出33方阵便可解决问题.从55方队中选取3行3列有选法所以从55方阵选不在同一行也不在同一列的3人有选法。处理复杂的排列组合问题时可以把一个问题退化成一个简要的问题,通过解决这个简要的问题的解决找到解题方法,从而进下一步解决原来的问题练习题:某城市的街区由12个全等的矩形区组成其中实线表示马路,从A走到B的最短路径有多少种?()十八.数字排序问题查字典策略例18由0,1,2,3,4,5六个数字可以组成多少个没有重复的比大的数?解:数字排序问题可用查字典法,查字典的法应从高位向低位查,依次求出其符合要求的个数,根据分类计数原理求出其总数。 练习:用
20、0,1,2,3,4,5这六个数字组成没有重复的四位偶数,将这些数字从小到大排列起来,第71个数是 3140 十九.树图策略例19人相互传球,由甲开始发球,并作为第一次传球,经过次传求后,球仍回到甲的手中,则不同的传球方式有_ 对于条件比较复杂的排列组合问题,不易用公式进行运算,树图会收到意想不到的结果练习: 分别编有1,2,3,4,5号码的人与椅,其中号人不坐号椅()的不同坐法有多少种?二十.复杂分类问题表格策略例20有红、黄、兰色的球各5只,分别标有A、B、C、D、E五个字母,现从中取5只,要求各字母均有且三色齐备,则共有多少种不同的取法红111223黄123121兰321211取法 解:一
21、些复杂的分类选取题,要满足的条件比较多, 无从入手,经常出现重复遗漏的情况,用表格法,则分类明确,能保证题中须满足的条件,能达到好的效果.小结 本节课,我们对有关排列组合的几种常见的解题策略加以复习巩固。排列组合历来是学习中的难点,通过我们平时做的练习题,不难发现排列组合题的特点是条件隐晦,不易挖掘,题目多变,解法独特,数字庞大,难以验证。同学们只有对基本的解题策略熟练掌握。根据它们的条件,我们就可以选取不同的技巧来解决问题.对于一些比较复杂的问题,我们可以将几种策略结合起来应用把复杂的问题简单化,举一反三,触类旁通,进而为后续学习打下坚实的基础。第一练 基础训练A组一、选择题 1将个不同的小
22、球放入个盒子中,则不同放法种数有( )A B C D 2从台甲型和台乙型电视机中任意取出台,其中至少有甲型与乙型电视机各台,则不同的取法共有( )A种 B.种 C.种 D.种3个人排成一排,其中甲、乙两人至少有一人在两端的排法种数有( )A B C D4共个人,从中选1名组长1名副组长,但不能当副组长,不同的选法总数是( )A. B C D5现有男、女学生共人,从男生中选人,从女生中选人分别参加数学、物理、化学三科竞赛,共有种不同方案,那么男、女生人数分别是( )A男生人,女生人 B男生人,女生人C男生人,女生人 D男生人,女生人.二、填空题 1从甲、乙,等人中选出名代表,那么(1)甲一定当选
23、,共有 种选法(2)甲一定不入选,共有 种选法.(3)甲、乙二人至少有一人当选,共有 种选法.142名男生,名女生排成一排,女生不排两端,则有 种不同排法.3由这六个数字组成_ _个没有重复数字的六位奇数.4在的九个数字里,任取四个数字排成一个首末两个数字是奇数的四位数,这样的四位数有_个?5用四个不同数字组成四位数,所有这些四位数中的数字的总和为,则 .6从中任取三个数字,从中任取两个数字,组成没有重复数字的五位数,共有_个?三、解答题1判断下列问题是排列问题还是组合问题?并计算出结果.(1)高三年级学生会有人:每两人互通一封信,共通了多少封信?每两人互握了一次手,共握了多少次手?(2)高二
24、年级数学课外小组人:从中选一名正组长和一名副组长,共有多少种不同的选法?从中选名参加省数学竞赛,有多少种不同的选法?(3)有八个质数:从中任取两个数求它们的商可以有多少种不同的商?从中任取两个求它的积,可以得到多少个不同的积?2个排成一排,在下列情况下,各有多少种不同排法?(1)甲排头,(2)甲不排头,也不排尾,(3)甲、乙、丙三人必须在一起,(4)甲、乙之间有且只有两人,(5)甲、乙、丙三人两两不相邻,(6)甲在乙的左边(不一定相邻),(7)甲、乙、丙三人按从高到矮,自左向右的顺序,(8)甲不排头,乙不排当中。3解方程 第二练 综合训练B组一、选择题 1由数字、组成没有重复数字的五位数,其中
25、小于的偶数共有( )A个 B个 C个 D 个2张不同的电影票全部分给个人,每人至多一张,则有不同分法的种数是( )A B C D3且,则乘积等于A B C D4从字母中选出4个数字排成一列,其中一定要选出和,并且必须相邻(在的前面),共有排列方法( )种.A. B C D5从不同号码的双鞋中任取只,其中恰好有双的取法种数为( )A B C D二、填空题 1个人参加某项资格考试,能否通过,有 种可能的结果?2以这几个数中任取个数,使它们的和为奇数,则共有 种不同取法.3已知集合,从集合,中各取一个元素作为点的坐标,可作出不同的点共有_个.4且若则_.5在件产品中有件是次品,从中任意抽了件,至少有
26、件是次品的抽法共有_种(用数字作答).6,则含有五个元素,且其中至少有两个偶数的子集个数为_.三、解答题1集合中有个元素,集合中有个元素,集合中有个元素,集合满足(1)有个元素; (2)(3), 求这样的集合的集合个数.2计算:(1); (2).(3)3证明:.、4从中任选三个不同元素作为二次函数的系数,问能组成多少条图像为经过原点且顶点在第一象限或第三象限的抛物线?5张椅子排成,有个人就座,每人个座位,恰有个连续空位的坐法共有多少种?第三练 提高训练C组一、选择题 1若,则的值为( )A B C D2某班有名男生,名女生,现要从中选出人组成一个宣传小组,其中男、女学生均不少于人的选法为( )
27、A B C D 3本不同的书分给甲、乙、丙三人,每人两本,不同的分法种数是( )A B C D4设含有个元素的集合的全部子集数为,其中由个元素组成的子集数为,则的值为( )A. B C D5不共面的四个定点到平面的距离都相等,这样的平面共有( ) A个 B个 C个 D个 6由十个数码和一个虚数单位可以组成虚数的个数为( )A. B C D二、填空题 1将数字填入标号为的四个方格里,每格填一个数字,则每个方格的标号与所填的数字均不同的填法有 种?2在的边上有个点,边上有个点,加上点共个点,以这个点为顶点的三角形有 个.3从,这七个数字中任取三个不同数字作为二次函数的系数则可组成不同的函数_个,其
28、中以轴作为该函数的图像的对称轴的函数有_个.4若则自然数_.5若,则.三、解答题1个人坐在一排个座位上,问(1)空位不相邻的坐法有多少种?(2) 个空位只有个相邻的坐法有多少种?(3) 个空位至多有个相邻的坐法有多少种?2有个球,其中个黑球,红、白、蓝球各个,现从中取出个球排成一列,共有多少种不同的排法?第四、五讲 二项式定理第一练 二项式定理基础训练A组 一、选择题 1在的展开式中的常数项是( )A. B C D2的展开式中的项的系数是( )A. B C D3展开式中只有第六项二项式系数最大,则展开式中的常数项是( )A B C D二、填空题 1在的展开式中,的系数是 .2在展开式中,如果第
29、项和第项的二项式系数相等,则 , .三、解答题1已知展开式中的二项式系数的和比展开式的二项式系数的和大,求展开式中的系数最大的项和系数量小的项.2(1)在的展开式中,若第项与第项系数相等,且等于多少?(2)的展开式奇数项的二项式系数之和为,则求展开式中二项式系数最大项。3已知其中是常数,计算第二练 二项式定理 综合训练B组一、选择题 1把把二项式定理展开,展开式的第项的系数是( )A B C D2的展开式中,的系数是,则的系数是( )A. B C D3在的展开中,的系数是( )A. B C D二、填空题 1展开式中的常数项有 2在件产品中有件是次品,从中任意抽了件,至少有件是次品的抽法共有_种
30、(用数字作答).3的展开式中的的系数是_三、解答题1、求展开式中的常数项。第三练 二项式定理提高训练C组一、选择题 1若,则的值为( )A. B C D2在的展开式中,若第七项系数最大,则的值可能等于( )A. B C D二、填空题 1若的展开式中的系数为,则常数的值为 .2的近似值(精确到)是多少?3已知,那么等于多少?三、解答题1求展开式中按的降幂排列的前两项.2用二次项定理证明能被整除.3求证:.4(1)若的展开式中,的系数是的系数的倍,求;(2)已知的展开式中, 的系数是的系数与的系数的等差中项,求;(3)已知的展开式中,二项式系数最大的项的值等于,求.数学选修2-3 第一章 计数原理
31、 基础训练A组 答案一、选择题 1B 每个小球都有种可能的放法,即2C 分两类:(1)甲型台,乙型台:;(2)甲型台,乙型台: 3C 不考虑限制条件有,若甲,乙两人都站中间有,为所求4B 不考虑限制条件有,若偏偏要当副组长有,为所求5B 设男学生有人,则女学生有人,则 即二、填空题1(1) ;(2) ;(3) 2 先排女生有,再排男生有,共有3 既不能排首位,也不能排在末尾,即有,其余的有,共有4 先排首末,从五个奇数中任取两个来排列有,其余的,共有5 当时,有个四位数,每个四位数的数字之和为 ;当时,不能被整除,即无解6 不考虑的特殊情况,有若在首位,则 三、解答题1解:(1)错误!未找到引
32、用源。是排列问题,共通了封信;错误!未找到引用源。是组合问题,共握手次。(2)错误!未找到引用源。是排列问题,共有种选法;错误!未找到引用源。是组合问题,共有种选法。(3)错误!未找到引用源。是排列问题,共有个商;错误!未找到引用源。是组合问题,共有个积。2解:(1)甲固定不动,其余有,即共有种;(2)甲有中间个位置供选择,有,其余有,即共有种;(3)先排甲、乙、丙三人,有,再把该三人当成一个整体,再加上另四人,相当于人的全排列,即,则共有种;(4)从甲、乙之外的人中选个人排甲、乙之间,有,甲、乙可以交换有,把该四人当成一个整体,再加上另三人,相当于人的全排列,则共有种;(5)先排甲、乙、丙之
33、外的四人,有,四人形成五个空位,甲、乙、丙三人排这五个空位,有,则共有种;(6)不考虑限制条件有,甲在乙的左边(不一定相邻),占总数的一半,即种;(7)先在个位置上排甲、乙、丙之外的四人,有,留下三个空位,甲、乙、丙三人按从高到矮,自左向右的顺序自动入列,不能乱排的,即(8)不考虑限制条件有,而甲排头有,乙排当中有,这样重复了甲排头,乙排当中一次,即3解:得 数学选修2-3 第一章 计数原理 综合训练B组 答案一、选择题 1C 个位,万位,其余,共计2D 相当于个元素排个位置,3B 从到共计有个正整数,即4A 从中选个,有,把看成一个整体,则个元素全排列, 共计5A 先从双鞋中任取双,有,再从
34、只鞋中任取只,即,但需要排除 种成双的情况,即,则共计二、填空题1 每个人都有通过或不通过种可能,共计有2 四个整数和为奇数分两类:一奇三偶或三奇一偶,即3 ,其中重复了一次4 5 件次品,或件次品,6 直接法:分三类,在个偶数中分别选个,个,个偶数,其余选奇数, ;间接法:三、解答题1解:中有元素 。2解:(1)原式。 (2)原式。另一方法: (3)原式3证明:左边右边 所以等式成立。4解:抛物线经过原点,得,当顶点在第一象限时,则有种;当顶点在第三象限时,则有种;共计有种。5解:把个人先排,有,且形成了个缝隙位置,再把连续的个空位和个空位 当成两个不同的元素去排个缝隙位置,有,所以共计有种
35、。数学选修2-3 第一章 计数原理 提高训练C组 答案一、选择题 1B 2D 男生人,女生人,有;男生人,女生人,有 共计3A 甲得本有,乙从余下的本中取本有,余下的,共计4B 含有个元素的集合的全部子集数为,由个元素组成的子集数为,5D 四个点分两类:(1)三个与一个,有;(2)平均分二个与二个,有 共计有6D 复数为虚数,则有种可能,有种可能,共计种可能二、填空题1 分三类:第一格填,则第二格有,第三、四格自动对号入座,不能自由排列;第一格填,则第三格有,第一、四格自动对号入座,不能自由排列;第一格填,则第撕格有,第二、三格自动对号入座,不能自由排列;共计有2 3 ,;4 5 而,得三、解
36、答题1解:个人排有种, 人排好后包括两端共有个“间隔”可以插入空位.(1)空位不相邻相当于将个空位安插在上述个“间隔”中,有种插法,故空位不相邻的坐法有种。(2)将相邻的个空位当作一个元素,另一空位当作另一个元素,往个“间隔”里插有种插法,故个空位中只有个相邻的坐法有种。(3) 个空位至少有个相邻的情况有三类:个空位各不相邻有种坐法;个空位个相邻,另有个不相邻有种坐法;个空位分两组,每组都有个相邻,有种坐法.综合上述,应有种坐法。2解:分三类:若取个黑球,和另三个球,排个位置,有;若取个黑球,从另三个球中选个排个位置,个黑球是相同的,自动进入,不需要排列,即有;若取个黑球,从另三个球中选个排个
37、位置,个黑球是相同的,自动进入,不需要排列,即有;所以有种。数学选修2-3 第一章 二项式定理 基础训练A组一、选择题 1A 令2B 3A 只有第六项二项式系数最大,则, ,令二、填空题1 ,令2 三、解答题1解:,的通项当时,展开式中的系数最大,即为展开式中的系数最大的项;当时,展开式中的系数最小,即为展开式中的系数最小的项。2解:(1)由已知得(2)由已知得,而展开式中二项式系数最大项是。3解:设,令,得 令,得数学选修2-3 第一章 计数原理 综合训练B组一、选择题 1D ,系数为2A ,令 则,再令3D 二、填空题1 的通项为其中的通项为 ,所以通项为,令得,当时,得常数为;当时,得常数为;当时,得常数为;2 件次品,或件次品,3 原式,中含有的项是 ,所以展开式中的的系数是 三、解答题1解:,在中,的系数就是展开式中的常数项。另一方法: ,数学选修2-3 第一章 二项式定理 提高训练C组一、选择题 1A 2D 分三种情况:(1)若仅系数最大,则共有项,;(2)若与系数相等且最大,则共有项,;(3)若与系数相等且最大,则共有项,所以的值可能等于二、填空题1 ,令 2 3 设,令,得 令,得,三、解答题1解: 2解:,3证明: 4解:(1);(2)得;(3) 得,或 所以。专心-专注-专业