《函数的最值教案(共3页).doc》由会员分享,可在线阅读,更多相关《函数的最值教案(共3页).doc(3页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。
1、精选优质文档-倾情为你奉上第二节函数的最大(小)值教学目的:(1)理解函数的最大(小)值及其几何意义;(2)学会运用函数图象理解和研究函数的性质;教学重点:函数的最大(小)值及其几何意义教学难点:利用函数的单调性求函数的最大(小)值 教学过程:一、引入课题画出下列函数的图象,并根据图象解答下列问题: 说出y=f(x)的单调区间,以及在各单调区间上的单调性; 指出图象的最高点或最低点,并说明它能体现函数的什么特征?(1)(2)(3)(4)二、新课教学(一)函数最大(小)值定义1最大值一般地,设函数y=f(x)的定义域为I,如果存在实数M满足:(1)对于任意的xI,都有f(x)M;(2)存在x0I
2、,使得f(x0) = M那么,称M是函数y=f(x)的最大值(Maximum Value)思考:仿照函数最大值的定义,给出函数y=f(x)的最小值(Minimum Value)的定义(学生活动)注意: 函数最大(小)首先应该是某一个函数值,即存在x0I,使得f(x0) = M; 函数最大(小)应该是所有函数值中最大(小)的,即对于任意的xI,都有f(x)M(f(x)M)2利用函数单调性的判断函数的最大(小)值的方法 利用二次函数的性质(配方法)求函数的最大(小)值 利用图象求函数的最大(小)值 利用函数单调性的判断函数的最大(小)值如果函数y=f(x)在区间a,b上单调递增,在区间b,c上单调
3、递减则函数y=f(x)在x=b处有最大值f(b);如果函数y=f(x)在区间a,b上单调递减,在区间b,c上单调递增则函数y=f(x)在x=b处有最小值f(b);(二)典型例题例1:如图为函数,的图象,指出它的最大值、最小值及单调区间【解】由图可以知道:当时,该函数取得最小值;当时,函数取得最大值为;函数的单调递增区间有个:和;该函数的单调递减区间有三个:、和例2:求下列函数的最小值:(1); (2),【解】()当时,;()因为函数在上是单调减函数,所以当时函数取得最小值为例3(教材P36例3)利用二次函数的性质确定函数的最大(小)值解:(略)25说明:对于具有实际背景的问题,首先要仔细审清题
4、意,适当设出变量,建立适当的函数模型,然后利用二次函数的性质或利用图象确定函数的最大(小)值巩固练习:如图,把截面半径为25cm的圆形木头锯成矩形木料,如果矩形一边长为x,面积为y试将y表示成x的函数,并画出函数的大致图象,并判断怎样锯才能使得截面面积最大?例4(新题讲解)旅 馆 定 价一个星级旅馆有150个标准房,经过一段时间的经营,经理得到一些定价和住房率的数据如下:房价(元)住房率(%)16055140651207510085欲使每天的的营业额最高,应如何定价?解:根据已知数据,可假设该客房的最高价为160元,并假设在各价位之间,房价与住房率之间存在线性关系设为旅馆一天的客房总收入,为与
5、房价160相比降低的房价,因此当房价为元时,住房率为,于是得=150由于1,可知090因此问题转化为:当090时,求的最大值的问题将的两边同除以一个常数0.75,得1=25017600由于二次函数1在=25时取得最大值,可知也在=25时取得最大值,此时房价定位应是16025=135(元),相应的住房率为67.5%,最大住房总收入为13668.75(元)所以该客房定价应为135元(当然为了便于管理,定价140元也是比较合理的)例5(教材P37例4)求函数在区间2,6上的最大值和最小值解:(略)注意:利用函数的单调性求函数的最大(小)值的方法与格式巩固练习:(教材P38练习4)例6: 求,的最小值
6、【解】,其图象是开口向上,对称轴为的抛物线 若,则在上是增函数,;若,则;若,则在上是减函数,的最小值不存在点评: 含参数问题的最值,一般情况下,我们先将参数看成是已知数,但不能解了我们再进行讨论!例7:已知二次函数在上有最大值4,求实数的值 解:函数的对称轴为,当时,则当时函数取最大值,即即;当时,则当时函数取得最大值,即,即所以,或。三、归纳小结,强化思想函数的单调性一般是先根据图象判断,再利用定义证明画函数图象通常借助计算机,求函数的单调区间时必须要注意函数的定义域,单调性的证明一般分五步:取 值 作 差 变 形 定 号 下结论四、作业布置书面作业:课本P45 习题(A组) 第6、7、8题ABCD提高作业:快艇和轮船分别从A地和C地同时开出,如下图,各沿箭头方向航行,快艇和轮船的速度分别是45 km/h和15 km/h,已知AC=150km,经过多少时间后,快艇和轮船之间的距离最短?专心-专注-专业