《2016年高考数学文真题分类汇编:立体几何(共15页).doc》由会员分享,可在线阅读,更多相关《2016年高考数学文真题分类汇编:立体几何(共15页).doc(15页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。
1、精选优质文档-倾情为你奉上2016年高考数学文试题分类汇编立体几何一、选择题1、(2016年山东高考)一个由半球和四棱锥组成的几何体,其三视图如图所示.则该几何体的体积为(A) (B) (C) (D)2、(2016年上海高考)如图,在正方体ABCDA1B1C1D1中,E、F分别为BC、BB1的中点,则下列直线中与直线EF相交的是( )(A)直线AA1 (B)直线A1B1 (C)直线A1D1 (D)直线B1C1【答案】D3、(2016年天津高考)将一个长方形沿相邻三个面的对角线截去一个棱锥,得到的几何体的正视图与俯视图如图所示,则该几何体的侧(左)视图为( )【答案】B4、(2016年全国I卷高
2、考)如图,某几何体的三视图是三个半径相等的圆及每个圆中两条互相垂直的半径.若该几何体的体积是,则它的表面积是(A)17 (B)18 (C)20 (D)28 【答案】A5、(2016年全国I卷高考)如平面过正方体ABCDA1B1C1D1的顶点A,,,则m,n所成角的正弦值为(A)(B)(C)(D)【答案】A6、(2016年全国II卷高考)如图是由圆柱与圆锥组合而成的几何体的三视图,则该几何体的表面积为( )(A)20 (B)24 (C)28 (D)32【答案】C7、(2016年全国III卷高考)如图,网格纸上小正方形的边长为1,粗实现画出的是某多面体的三视图,则该多面体的表面积为(A) (B)
3、(C)90 (D)81【答案】B8、(2016年浙江高考)已知互相垂直的平面 交于直线l.若直线m,n满足m,n,则( )A.mlB.mnC.nlD.mn【答案】C二、填空题1、(2016年北京高考)某四棱柱的三视图如图所示,则该四棱柱的体积为_.【答案】2、(2016年四川高考)已知某三菱锥的三视图如图所示,则该三菱锥的体积 。【答案】3、(2016年浙江高考)某几何体的三视图如图所示(单位:cm),则该几何体的表面积是_cm2,体积是_cm3.【答案】80;40三、解答题1、(2016年北京高考)如图,在四棱锥P-ABCD中,PC平面ABCD,(I)求证:;(II)求证:;(III)设点E
4、为AB的中点,在棱PB上是否存在点F,使得平面?说明理由.解:(I)因为平面,所以又因为,所以平面(II)因为,所以因为平面,所以所以平面所以平面平面(III)棱上存在点,使得平面证明如下:取中点,连结,又因为为的中点,所以又因为平面,所以平面 2、(2016年江苏省高考)如图,在直三棱柱ABC-A1B1C1中,D,E分别为AB,BC的中点,点F在侧棱B1B上,且 ,.求证:(1)直线DE平面A1C1F;(2)平面B1DE平面A1C1F. (2)在直三棱柱中,因为平面,所以又因为所以平面因为平面,所以又因为所以因为直线,所以3、(2016年山东高考)在如图所示的几何体中,D是AC的中点,EFD
5、B.(I)已知AB=BC,AE=EC.求证:ACFB;(II)已知G,H分别是EC和FB的中点.求证:GH平面ABC.解析:()证明:因,所以与确定一个平面,连接,因为为的中点,所以;同理可得,又因为,所以平面,因为平面,。()设的中点为,连,在中,是的中点,所以,又,所以;在中,是的中点,所以,又,所以平面平面,因为平面,所以平面。4、(2016年上海高考)将边长为1的正方形AA1O1O(及其内部)绕OO1旋转一周形成圆柱,如图, 长为 ,长为,其中B1与C在平面AA1O1O的同侧.(1)求圆柱的体积与侧面积;(2)求异面直线O1B1与OC所成的角的大小. 【解析】(1)由题意可知,圆柱的高
6、,底面半径计算体积与侧面积即得.(2)由得或其补角为与所成的角,计算即得试题解析:(1)由题意可知,圆柱的母线长,底面半径圆柱的体积,圆柱的侧面积(2)设过点的母线与下底面交于点,则,所以或其补角为与所成的角由长为,可知,由长为,可知,所以异面直线与所成的角的大小为5、(2016年四川高考)如图,在四棱锥P-ABCD中,PACD,ADBC,ADC=PAB=90,BC=CD=AD。(I)在平面PAD内找一点M,使得直线CM平面PAB,并说明理由;(II)证明:平面PAB平面PBD。【解析】(I)取棱AD的中点M(M平面PAD),点M即为所求的一个点.理由如下:因为ADBC,BC=AD,所以BCA
7、M, 且BC=AM.所以四边形AMCB是平行四边形,从而CMAB.又AB 平面PAB,CM 平面PAB,所以CM平面PAB.(说明:取棱PD的中点N,则所找的点可以是直线MN上任意一点)(II)由已知,PAAB, PA CD, 因为ADBC,BC=AD,所以直线AB与CD相交,所以PA 平面ABCD.从而PA BD.因为ADBC,BC=AD,所以BCMD,且BC=MD.所以四边形BCDM是平行四边形.所以BM=CD=AD,所以BDAB.又ABAP=A,所以BD平面PAB.又BD 平面PBD,所以平面PAB平面PBD.6、(2016年天津高考)如图,四边形ABCD是平行四边形,平面AED平面AB
8、CD,EF|AB,AB=2,BC=EF=1,AE=,DE=3,BAD=60,G为BC的中点.()求证:FG|平面BED;()求证:平面BED平面AED;()求直线EF与平面BED所成角的正弦值.解析:()证明:取的中点为,连接,在中,因为是的中点,所以且,又因为,所以且,即四边形是平行四边形,所以,又平面,平面,所以平面.()证明:在中,由余弦定理可,进而可得,即,又因为平面平面平面;平面平面,所以平面.又因为平面,所以平面平面.()解:因为,所以直线与平面所成角即为直线与平面所成角.过点作于点,连接,又因为平面平面,由()知平面,所以直线与平面所成角即为.在中,由余弦定理可得,所以,因此,在
9、中,所以直线与平面所成角的正弦值为7、(2016年全国I卷高考)如图,已知正三棱锥P-ABC的侧面是直角三角形,PA=6,顶点P在平面ABC内的正投影为点D,D在平面PAB内的正投影为点E,连结PE并延长交AB于点G.(I)证明:G是AB的中点;(II)在图中作出点E在平面PAC内的正投影F(说明作法及理由),并求四面体PDEF的体积(II)在平面内,过点作的平行线交于点,即为在平面内的正投影.理由如下:由已知可得,又,所以,因此平面,即点为在平面内的正投影.连结,因为在平面内的正投影为,所以是正三角形的中心.由(I)知,是的中点,所以在上,故由题设可得平面,平面,所以,因此由已知,正三棱锥的
10、侧面是直角三角形且,可得 在等腰直角三角形中,可得所以四面体的体积8、(2016年全国II卷高考) 如图,菱形的对角线与交于点,点、分别在,上,交于点,将沿折到的位置.()证明:;()若,求五棱锥体积.试题解析:(I)由已知得,又由得,故由此得,所以.(II)由得由得所以 于是故由(I)知,又,所以平面于是又由,所以,平面又由得五边形的面积所以五棱锥体积9、(2016年全国III卷高考)如图,四棱锥中,平面,为线段上一点,为的中点(I)证明平面;(II)求四面体的体积.()因为平面,为的中点,所以到平面的距离为. .9分取的中点,连结.由得,.由得到的距离为,故.所以四面体的体积. .12分10、(2016年浙江高考)如图,在三棱台ABC-DEF中,平面BCFE平面ABC,ACB=90,BE=EF=FC=1,BC=2,AC=3.(I)求证:BF平面ACFD;(II)求直线BD与平面ACFD所成角的余弦值.解析:(1)延长相交于一点,如图所示,因为平面平面,且,所以平面,因此,又因为,所以为等边三角形,且为的中点,则,所以平面.(2)因为平面,所以是直线与平面所成的角,在中,得,所以直线与平面所成的角的余弦值为.专心-专注-专业