第五节 隐函数的求导方法 (P37).ppt

上传人:创****公 文档编号:1593730 上传时间:2019-10-19 格式:PPT 页数:25 大小:965KB
返回 下载 相关 举报
第五节 隐函数的求导方法 (P37).ppt_第1页
第1页 / 共25页
第五节 隐函数的求导方法 (P37).ppt_第2页
第2页 / 共25页
点击查看更多>>
资源描述

《第五节 隐函数的求导方法 (P37).ppt》由会员分享,可在线阅读,更多相关《第五节 隐函数的求导方法 (P37).ppt(25页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。

1、,第五节,一、一个方程所确定的隐函数 及其导数,二、方程组所确定的隐函数组 及其导数,隐函数的求导方法,本节讨论 :,1) 方程在什么条件下才能确定隐函数 .,例如, 方程,当 C 0 时, 不能确定隐函数;,2) 在方程能确定隐函数时,研究其连续性、可微性,及求导方法问题 .,一、一个方程所确定的隐函数及其导数,定理1. 设函数,则方程,单值连续函数 y = f (x) ,并有连续,(隐函数求导公式),定理证明从略,仅就求导公式推导如下:, 具有连续的偏导数;,的某邻域内可唯一确定一个,在点,的某一邻域内满足,满足条件,导数,两边对 x 求导,在,的某邻域内,则,若F( x , y ) 的二

2、阶偏导数也都连续,二阶导数 :,则还有,例1. 验证方程,在点(0,0)某邻域,可确定一个单值可导隐函数,并求,两边对 x 求导,两边再对 x 求导,令 x = 0 , 注意此时,导数的另一求法, 利用隐函数求导,定理2 .,若函数,的某邻域内具有连续偏导数 ,则方程,在点,并有连续偏导数,定一个单值连续函数 z = f (x , y) ,定理证明从略, 仅就求导公式推导如下:,满足, 在点,满足:,某一邻域内可唯一确,两边对 x 求偏导,同样可得,则,例2. 设,例3.,设F( x , y)具有连续偏导数,已知方程,二、方程组所确定的隐函数组及其导数,隐函数存在定理还可以推广到方程组的情形.

3、,由 F、G 的偏导数组成的行列式,称为F、G 的雅可比( Jacobi )行列式.,以两个方程确定两个隐函数的情况为例 ,即,定理3.,的某一邻域内具有连续偏,设函数,则方程组,的单值连续函数,且有偏导数公式 :, 在点,的某一邻域内可唯一确定一组满足条件,满足:,导数;,例4. 设,解:,方程组两边对 x 求导,并移项得,求,练习: 求,答案:,由题设,故有,例5.设函数,在点(u,v) 的某一,1) 证明函数组,( x, y) 的某一邻域内,2) 求,解: 1) 令,对 x , y 的偏导数.,在与点 (u, v) 对应的点,邻域内有连续的偏导数,且,唯一确定一组单值、连续且具有,连续偏

4、导数的反函数,式两边对 x 求导, 得,则有,由定理 3 可知结论 1) 成立.,2) 求反函数的偏导数.,从方程组解得,同理, 式两边对 y 求导, 可得,从方程组解得,同理, 式两边对 y 求导, 可得,内容小结,1. 隐函数( 组) 存在定理,2. 隐函数 ( 组) 求导方法,方法1. 利用复合函数求导法则直接计算 ;,方法2. 代公式,思考与练习,设,求,提示:,Ex:,分别由下列两式确定 :,又函数,有连续的一阶偏导数 ,1. 设,解: 两个隐函数方程两边对 x 求导, 得,解得,因此,2. 设,是由方程,和,所确定的函数 , 求,解 分别在各方程两端对 x 求导, 得,解:,二元线性代数方程组解的公式,雅可比(1804 1851),德国数学家.,他在数学方面最主要,的成就是和挪威数学家阿贝儿相互独,地奠定了椭圆函数论的基础.,他对行列,式理论也作了奠基性的工作.,在偏微分,方程的研究中引进了“雅可比行列式”,并应用在微积分,中.,他的工作还包括代数学, 变分法, 复变函数和微分方,程,在分析力学, 动力学及数学物理方面也有贡献 .,他,在柯尼斯堡大学任教18年, 形成了以他为首的学派.,

展开阅读全文
相关资源
相关搜索

当前位置:首页 > pptx模板 > 校园应用

本站为文档C TO C交易模式,本站只提供存储空间、用户上传的文档直接被用户下载,本站只是中间服务平台,本站所有文档下载所得的收益归上传人(含作者)所有。本站仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。若文档所含内容侵犯了您的版权或隐私,请立即通知淘文阁网,我们立即给予删除!客服QQ:136780468 微信:18945177775 电话:18904686070

工信部备案号:黑ICP备15003705号© 2020-2023 www.taowenge.com 淘文阁