《第五节 隐函数的求导方法 (P37).ppt》由会员分享,可在线阅读,更多相关《第五节 隐函数的求导方法 (P37).ppt(25页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。
1、,第五节,一、一个方程所确定的隐函数 及其导数,二、方程组所确定的隐函数组 及其导数,隐函数的求导方法,本节讨论 :,1) 方程在什么条件下才能确定隐函数 .,例如, 方程,当 C 0 时, 不能确定隐函数;,2) 在方程能确定隐函数时,研究其连续性、可微性,及求导方法问题 .,一、一个方程所确定的隐函数及其导数,定理1. 设函数,则方程,单值连续函数 y = f (x) ,并有连续,(隐函数求导公式),定理证明从略,仅就求导公式推导如下:, 具有连续的偏导数;,的某邻域内可唯一确定一个,在点,的某一邻域内满足,满足条件,导数,两边对 x 求导,在,的某邻域内,则,若F( x , y ) 的二
2、阶偏导数也都连续,二阶导数 :,则还有,例1. 验证方程,在点(0,0)某邻域,可确定一个单值可导隐函数,并求,两边对 x 求导,两边再对 x 求导,令 x = 0 , 注意此时,导数的另一求法, 利用隐函数求导,定理2 .,若函数,的某邻域内具有连续偏导数 ,则方程,在点,并有连续偏导数,定一个单值连续函数 z = f (x , y) ,定理证明从略, 仅就求导公式推导如下:,满足, 在点,满足:,某一邻域内可唯一确,两边对 x 求偏导,同样可得,则,例2. 设,例3.,设F( x , y)具有连续偏导数,已知方程,二、方程组所确定的隐函数组及其导数,隐函数存在定理还可以推广到方程组的情形.
3、,由 F、G 的偏导数组成的行列式,称为F、G 的雅可比( Jacobi )行列式.,以两个方程确定两个隐函数的情况为例 ,即,定理3.,的某一邻域内具有连续偏,设函数,则方程组,的单值连续函数,且有偏导数公式 :, 在点,的某一邻域内可唯一确定一组满足条件,满足:,导数;,例4. 设,解:,方程组两边对 x 求导,并移项得,求,练习: 求,答案:,由题设,故有,例5.设函数,在点(u,v) 的某一,1) 证明函数组,( x, y) 的某一邻域内,2) 求,解: 1) 令,对 x , y 的偏导数.,在与点 (u, v) 对应的点,邻域内有连续的偏导数,且,唯一确定一组单值、连续且具有,连续偏
4、导数的反函数,式两边对 x 求导, 得,则有,由定理 3 可知结论 1) 成立.,2) 求反函数的偏导数.,从方程组解得,同理, 式两边对 y 求导, 可得,从方程组解得,同理, 式两边对 y 求导, 可得,内容小结,1. 隐函数( 组) 存在定理,2. 隐函数 ( 组) 求导方法,方法1. 利用复合函数求导法则直接计算 ;,方法2. 代公式,思考与练习,设,求,提示:,Ex:,分别由下列两式确定 :,又函数,有连续的一阶偏导数 ,1. 设,解: 两个隐函数方程两边对 x 求导, 得,解得,因此,2. 设,是由方程,和,所确定的函数 , 求,解 分别在各方程两端对 x 求导, 得,解:,二元线性代数方程组解的公式,雅可比(1804 1851),德国数学家.,他在数学方面最主要,的成就是和挪威数学家阿贝儿相互独,地奠定了椭圆函数论的基础.,他对行列,式理论也作了奠基性的工作.,在偏微分,方程的研究中引进了“雅可比行列式”,并应用在微积分,中.,他的工作还包括代数学, 变分法, 复变函数和微分方,程,在分析力学, 动力学及数学物理方面也有贡献 .,他,在柯尼斯堡大学任教18年, 形成了以他为首的学派.,