巨磁电阻实验(共12页).doc

上传人:飞****2 文档编号:15141249 上传时间:2022-05-11 格式:DOC 页数:12 大小:505KB
返回 下载 相关 举报
巨磁电阻实验(共12页).doc_第1页
第1页 / 共12页
巨磁电阻实验(共12页).doc_第2页
第2页 / 共12页
点击查看更多>>
资源描述

《巨磁电阻实验(共12页).doc》由会员分享,可在线阅读,更多相关《巨磁电阻实验(共12页).doc(12页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。

1、精选优质文档-倾情为你奉上巨磁电阻效应及其应用 巨磁电阻( Giant magneto resistance, 简称GMR)效应表示在一个巨磁电阻系统中, 非常弱小的磁性变化就能导致巨大的电阻变化的特殊效应. 法国科学家(Albert Fert)和德国科学家( Peter Grunberg )因分别独立发现效应而共同荣膺2007年诺贝尔物理学奖. GMR是一种和现象, 是的一种, 可以在材料和非磁性材料相间的薄膜层(几个厚)结构中观察到. 在量子力学出现后, 德国科学家海森伯(W. Heisenberg, 1932年诺贝尔奖得主)明确提出铁磁性有序状态源于铁磁性原子磁矩之间的量子力学交换作用,

2、 这个交换作用是短程的, 称为直接交换作用. 随后, 科学家们又发现很多的过渡金属和稀土金属的化合物也具有反铁磁有序状态, 即在有序排列的磁材料中, 相邻原子因受负的交换作用, 自旋为反平行排列, 如图1所示. 此时磁矩虽处于有序状态, 但总的净磁矩在不受外场作用时仍为零. 这种磁有序状态称为反铁磁性. 反铁磁性通过化合物中的氧离子(或其他非金属离子)将最近的磁性原子的磁矩耦合起来, 属于间接交换作用. 此外, 在稀土金属中也出现了磁有序, 其中原子的固有磁矩来自4f电子壳层. 相邻稀土原子的距离远大于4f电子壳层直径, 所以稀土金属中的传导电子担当了中介, 将相邻的稀土原子磁矩耦合起来, 这

3、就是RKKY型间接交换作用. 直接交换作用的特征长度为0.10.3nm, 间接交换作用可以长达1nm以上. 据此美国IBM实验室的江崎和朱兆祥提出了超晶格的概念所谓的超晶格就是指由两种(或两种以上)组分(或导电类型)不同、厚度极小的薄层材料交替生长在一起而得到的一种多周期结构材料, 其特点是这种复合材料的周期长度比各薄膜单晶的晶格常数大几倍或更长. 上世纪八十年代, 制作高质量的纳米尺度样品技术的出现使得金属超晶格成为研究前沿. 因此凝聚态物理工作者对这类人工材料的磁有序, 层间耦合, 电子输运等进行了广泛的基础方面的研究. 其中相关的代表性研究工作简介如下.其一是德国尤利希科研中心的物理学家

4、彼得格伦贝格尔. 他一直致力于研究铁磁性金属薄膜表面和界面上的磁有序状态, 其研究对象是一个三明治结构的薄膜, 两层厚度约10nm的铁层之间夹有厚度为1nm的铬层. 之所以选择选择这一材料系统, 首先是因为金属铁和铬是周期表上相近的元素, 具有类似的电子壳层, 容易实现两者的电子状态匹配. 其次, 金属铁和铬的晶格对称性和晶格常数相同, 它们之间晶格结构相匹配. 这两类匹配非常有利于对基本物理过程进行探索. 尽管如此, 长期以来该课题组所获得的三明治薄膜仅为多晶体. 随着制备薄膜技术的发展, 分子束外延(MBE)方法的应用才使得结构完整的单晶样品得以问世, 其成分依然是铁-铬-铁三层膜. 此后

5、, 为了进一步获得铁磁矩的有关信息, 科研工作者将光散射应用于对金属三层膜进行相关研究. 在实验过程中, 薄膜上的外磁场被逐步减小直至消失. 结果发现, 在铬层厚度为0.8nm的铁-铬-铁三明治中, 两边的两个铁磁层磁矩从彼此平行(较强磁场下)转变为反平行(弱磁场下). 亦即, 对于非铁磁层铬的某个特定厚度, 在无外磁场时, 两边铁磁层磁矩处于反平行状态, 这一现象成为巨磁电阻效应出现的前奏. 在对这一现象的进一步研究过程中, 格伦贝格尔等发现当两个磁矩反平行时,铁-铬-铁三明治呈现高电阻状态. 而当两个磁矩平行时, 则对应与其低电阻状态, 且两种不同状态下的阻值差高达10%. 之后, 格伦贝

6、格尔将此结果写成论文,并申请了将这种效应和材料应用于硬盘磁头的专利. 另一位科研工作者是巴黎十一大学固体物理实验室物理学家阿尔贝费尔, 其课题组将铁、铬薄膜交替制成几十个周期的铁-铬超晶格, 亦称周期性多层膜. 通过对此类物质的研究, 他们发现了当改变磁场强度时, 超晶格薄膜的电阻下降近一半, 即磁电阻比率达到50%. 据此该现象被命名为巨磁电阻现象, 并用两电流模型予以合理解释. 显然, 该周期性多层膜可视为若干个格伦贝格尔三明治的重叠, 因此德国和法国的这两个独立发现实属同一个物理现象. 除了上述两位诺贝尔奖获得者的开创性工作, IBM公司的斯图尔特帕金( S. P. Parkin )将G

7、MR的制作材料做了进一步推广, 为其工业化应用奠定了基础. 他于1990年首次报道了铁-铬超晶格系列之外的钴-钌和钴-铬超晶格体系亦有巨磁电阻效应, 并且随着非磁层厚度增加, 其磁电阻值振荡下降. 此后, 科学家在过渡金属超晶格和金属多层膜中又发现了20种左右不同的体系均存在巨磁电阻振荡现象. 帕金的工作首先为寻找更多的GMR材料开辟了广阔空间, 为寻找适合硬盘的GMR材料提供了可能, 1997年制成了GMR磁头即是其成功之一. 其次, 在薄膜制备方法上帕金采用较普通的磁控溅射技术用以替代精密的MBE方法, 并使之成为工业生产多层膜的标准. 磁控溅射技术克服了物理发现与产业化之间的障碍, 使巨

8、磁电阻成为基础研究快速转换为商业应用的国际典范. 同时, 巨磁电阻效应也被认为是纳米技术的首次真正应用. 巨磁电阻效应发现的另一重大意义在于打开了一扇通向新技术世界的大门自旋电子学. GMR作为自旋电子学的开端具有深远的科学意义. 传统的电子学是以电子的电荷移动为基础的, 电子自旋往往被忽略了. 巨磁电阻效应表明电子自旋对于电流的影响非常强烈, 电子的电荷与自旋两者都可能载运信息. 自旋电子学的研究和发展引发了电子技术与信息技术的一场新的革命. 目前电脑, 音乐播放器等各类数码电子产品中所装备的硬盘磁头, 基本上都应用了巨磁电阻效应. 利用巨磁电阻效应制成的多种传感器, 已广泛应用于各种测控领

9、域. 除利用铁磁膜-金属膜-铁磁膜的GMR效应外, 由两层铁磁膜夹一极薄的绝缘膜或半导体膜构成的隧穿磁阻(TMR)效应, 已显示出比GMR效应更高的灵敏度. 此外, 在单晶和多晶等多种形态的钙钛矿结构的稀土锰酸盐, 以及一些磁性半导体中, 都发现了巨磁电阻效应. 实验目的1 了解GMR效应的原理.2 测量GMR模拟传感器的磁电转换特性曲线.3 测量GMR的磁阻特性曲线.4 测量GMR开关(数字)传感器的磁电转换特性曲线.5 用GMR传感器测量电流.6 用GMR梯度传感器测量齿轮的角位移, 了解GMR转速传感器的原理.7 通过实验了解磁记录与读出的原理.实验原理根据导电的微观机理, 电子在导电时

10、并非沿电场直线前进, 而是不断和晶格中的原子产生碰撞(又称散射), 每次散射后电子都会改变运动方向, 总的运动是电场对电子的定向加速与这种无规散射运动的叠加. 电子在两次散射之间走过的平均路程称为平均自由程, 电子散射几率小, 则平均自由程长, 电阻率低. 在电阻定律 R=rl/S中, 电阻率r可视为常数, 与材料的几何尺度无关. 这是因为通常材料的几何尺度远大于电子的平均自由程(例如铜中电子的平均自由程约34nm), 可以忽略边界效应. 然而, 当材料的几何尺度小到纳米量级且只有几个原子的厚度时(例如, 铜原子的直径约为0.3nm), 电子在边界上的散射几率大大增加, 此时可以明显观察到厚度

11、减小, 电阻率增加的现象.电子除本身携带电荷外, 还具有自旋特性. 自旋磁矩又分为平行或反平行于外磁场方向的两种不同取向. 在自旋磁矩与材料的磁场方向平行的情况下, 电子散射的几率远小于二者反平行条件下的散射几率. 与此相应, 材料的电阻在自旋磁矩与外磁场方向平行时将远小于二者反平行时的阻值. 事实上, 材料的总电阻可视为两类自旋电流的并联电阻, 因此总电流则为两类自旋电流之和, 此即两电流模型. 如图2所示, 无外磁场时, 多层膜结构中的上下两层磁性材料反平行(反铁磁)耦合. 当施加足够强的外磁场后, 两层铁磁膜的方向都与外磁场方向一致, 外磁场使两层铁磁膜从反平行耦合变成了平行耦合. 电流

12、的方向在多数应用中与膜面方向平行.事实上, 有两类与自旋相关的散射对巨磁电阻效应有贡献: 其一, 界面上的散射. 在无外磁场条件下, 上下两层铁磁膜的磁场方向相反, 无论电子的初始自旋状态如何, 从一层铁磁膜进入另一层铁磁膜时都面临状态改变(平行反平行, 或反平行平行), 电子在界面上的散射几率很大, 对应于高电阻状态; 在有外磁场存在时, 上下两层铁磁膜的磁场方向一致, 电子在界面上的散射几率很小, 对应于低电阻状态. 其二, 铁磁膜内的散射. 即使电流方向平行于膜面, 由于无规散射, 电子也有一定的几率在上下两层铁磁膜之间穿行. 在无外磁场时, 上下两层铁磁膜的磁场方向相反, 无论电子的初

13、始自旋状态如何, 在穿行过程中都会经历散射几率小(平行)和散射几率大(反平行)两种过程, 两类自旋电流的并联电阻相似两个中等阻值的电阻的并联, 对应于高电阻状态. 在有外磁场时, 上下两层铁磁膜的磁场方向一致, 自旋平行的电子散射几率小, 自旋反平行的电子散射几率大, 两类自旋电流的并联电阻相似一个小电阻与一个大电阻的并联, 对应于低电阻状态. 多层膜GMR结构简单, 工作可靠, 磁阻随外磁场线性变化的范围大, 在制作模拟传感器方面得到广泛应用. 在数字记录与读出领域, 为进一步提高灵敏度, 发展了自旋阀结构的GMR. 如图3所示. 自旋阀结构的SV-GMR(Spin valve GMR)由钉

14、扎层, 被钉扎层, 中间导电层和自由层构成. 其中, 钉扎层使用反铁磁材料, 被钉扎层使用硬铁磁材料, 铁磁和反铁磁材料在交互耦合作用下形成一个偏转场, 此偏转场将被钉扎层的磁化方向固定, 不随外磁场改变. 自由层使用软铁磁材料, 它的磁化方向易于随外磁场转动. 这样, 很弱的外磁场就会改变自由层与被钉扎层磁场的相对取向, 对应于很高的灵敏度. 制造时, 使自由层的初始磁化方向与被钉扎层垂直, 磁记录材料的磁化方向与被钉扎层的方向相同或相反(对应于0或1), 当感应到磁记录材料的磁场时, 自由层的磁化方向就向与被钉扎层磁化方向相同(低电阻)或相反(高电阻)的方向偏转, 检测出电阻的变化, 就可

15、确定记录材料所记录的信息, 硬盘所用的GMR磁头就采用这种结构. 实验仪器一. 主体名称:ZKY-巨磁电阻效应及应用实验仪构成及功能:电流表部分:做为一个独立的电流表使用. 两个档位:2mA档和200mA档, 可通过电流量程切换开关选择合适的电流档位测量电流. 电压表部分:做为一个独立的电压表使用. 两个档位:2V档和200mV档, 可通过电压量程切换开关选择合适的电压档位. 恒流源部分:可变恒流源. 实验仪还提供GMR传感器工作所需的4V电源和运算放大器工作所需的8V电源.二 各种组件1. 基本组件:基本特性组件由GMR模拟传感器, 螺线管线圈及比较电路, 输入输出插孔组成. 用以对GMR的

16、磁电转换特性, 磁阻特性进行测量. GMR传感器置于螺线管的中央. 螺线管用于在实验过程中产生大小可计算的磁场, 由理论分析可知, 无限长直螺线管内部轴线上任一点的磁感应强度为: B = 0nI . 式中n为线圈密度, I为流经线圈的电流强度, 为真空中的磁导率. 采用国际单位制时, 由上式计算出的磁感应强度单位为特斯拉(1特斯拉10000高斯).2. 电流测量组件:电流测量组件将导线置于GMR模拟传感器近旁, 用GMR传感器测量导线通过不同大小电流时导线周围的磁场变化, 就可确定电流大小. 与一般测量电流需将电流表接入电路相比, 这种非接触测量不干扰原电路的工作, 具有特殊的优点.3. 角位

17、移测量组件: 角位移测量组件用巨磁阻梯度传感器作传感元件, 铁磁性齿轮转动时, 齿牙干扰了梯度传感器上偏置磁场的分布, 使梯度传感器输出发生变化, 每转过一齿, 就输出类似正弦波一个周期的波形. 利用该原理可以测量角位移(转速, 速度). 汽车上的转速与速度测量仪利用的就是这一原理. 4. 磁读写组件:磁读写组件用于演示磁记录与读出的原理. 磁卡做记录介质, 磁卡通过写磁头时可写入数据, 通过读磁头时将写入的数据读出来.巨磁电阻效应及其应用实验报告一、实验时间: 年 月 日 二、样品:巨磁阻基本特性组件, 磁读写组件, 电流测量组件, 角位移测量组件, 巨磁阻试件, 磁卡以及巨磁电阻效应及应用

18、实验仪(01-001). 三、实验目的: 1、了解巨磁电阻效应实验原理; 2、了解巨磁阻的模拟传感器磁电转换特性; 3、了解巨磁阻的磁阻特性; 4、通过实验了解磁记录与磁读写的原理. 四、实验内容:1、GMR模拟传感器的磁电转换特性测量:表1 磁阻两端电压4V励磁电流I1(mA)磁感应强度B输出电压U(mV)励磁电流I1(mA)磁感应强度B输出电压U(mV)10089.98069.76049.8403020151050-5-10-15.1-20-30.1-40.7-50.2-60-76.8-80.1-90-100=410-7H/m (1) n= 24000 T/m(2) (3)输出电压与磁感应

19、强度B之间的关系曲线:输出电压磁感应强度B与输出电压U之间的关系曲线02575100125150175200225250275-40.0-30.0-20.0-10.00.010.020.030.040.0磁感应强度B磁场减小时B-U关系曲线磁场增大时B-U关系曲线50U(V) 图(1)2、GMR磁阻特性测量:由式(3)可得磁感应强度B, 巨磁阻两端电压为4V, 则由欧姆定律可得磁阻R. 表2 磁阻特性测量 磁阻两端电压4V励磁电流I1(mA)磁感应强度B磁阻电流 I(mA)磁阻R()励磁电流 I1(mA)磁感应强度 B磁阻电流 I(mA)磁阻R()10030.1 -100-30.1 9027.

20、1 -90-27.1 8024.1 -80-24.1 69.521.0 -70-21.1 6018.1 -60-18.1 49.815.0 -50-15.1 39.111.8 -40.1-12.1 309.0 -30-9.0 206.0 -19.8-6.0 14.84.5 -15-4.5 103.0 -10-3.0 51.5 -5-1.5 00.0 00.0 -5.1-1.5 51.5 -10.1-3.0 103.0 -15-4.5 15.34.6 -20.2-6.1 206.0 -30.5-9.2 309.0 -40.1-12.1 40.112.1 -50-15.1 5015.1 -60-1

21、8.1 6018.1 -70.1-21.1 7021.1 -80-24.1 8024.1 -90-27.1 9027.1 -100-30.1 10030.1 R-B关系曲线磁阻与磁感应强度关系曲线:420043004400450046004700480049005000-40.0-30.0-20.0-10.00.010.020.030.040.0磁感应强度B磁阻R磁场减小时R-B关系曲线磁场增大时R-B关系曲线 图(2)3、GMR开关(数字)传感器的磁电转换特性曲线测量表3励磁电流I(mA)输出电压U(V)励磁电流I(mA)输出电压U(V)50-5040-4030-3020-2019.4-17

22、.519.4-17.510-1000-1010-2020-22.924.3-22.924.3-3030-4040-5050开关特性曲线00.20.40.60.811.21.41.61.82-60-40-200204060励磁电流I(mA)磁场减小时巨磁阻开关特性曲线磁场增大时巨磁阻开关特性曲线输出电压U(V)4、用GMR模拟传感器测量电流 表4低磁偏置25mV低磁偏置150mV励磁电流I(mA)输出电压U(mV)励磁电流I(mA)输出电压U(mV)励磁电流I(mA)输出电压U(mV)励磁电流I(mA)输出电压U(mV)300-300300-300200-200200-200100-100100

23、-1000.10.10.10.1-100100-100100-200200-200200-300300-300300待测电流与输出电压关系曲线:0.020.040.060.080.0100.0120.0140.0160.0180.0-400-2000200400偏置电压25mV励磁电流减小时I-U关系曲线偏置电压25mV励磁电流增大时I-U关系曲线偏置电压150mV励磁电流减小时I-U关系曲线偏置电压150mV励磁电流增大时I-U关系曲线图(3)偏执电压越大U-I直线斜率越大, 灵敏度越高. 5、GMR梯度传感器的特性应用:表5 齿轮角位移的测量转动角度/度036912151821输出电压/m

24、V转动角度/度2427303336394245输出电压/mV齿轮角位移的测量:输出电压转动角度与输出电压之间的关系曲线-15-10-505101505101520253035404550转动角度(度)U(V) 图(4)6、磁记录与读出:表6 二进制数字的写入与读出十进制数173二进制数10101101磁卡区域/mm0-55-1010-1515-2020-2525-3030-3535-40读出电平(V) 图(1)注意事项:1、由于巨磁阻传感器具有磁滞现象, 因此在实验中, 恒流源只能单方向调节, 不可回调. 否则测得的实验数据将不准确.2、测试卡组件不能长期处于“写”状态.3、实验过程中,实验环境不得处于强磁场中.专心-专注-专业

展开阅读全文
相关资源
相关搜索

当前位置:首页 > 教育专区 > 教案示例

本站为文档C TO C交易模式,本站只提供存储空间、用户上传的文档直接被用户下载,本站只是中间服务平台,本站所有文档下载所得的收益归上传人(含作者)所有。本站仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。若文档所含内容侵犯了您的版权或隐私,请立即通知淘文阁网,我们立即给予删除!客服QQ:136780468 微信:18945177775 电话:18904686070

工信部备案号:黑ICP备15003705号© 2020-2023 www.taowenge.com 淘文阁