数学必修一全部知识点+经典题+解析.doc

上传人:飞****2 文档编号:15137105 上传时间:2022-05-11 格式:DOC 页数:28 大小:2.59MB
返回 下载 相关 举报
数学必修一全部知识点+经典题+解析.doc_第1页
第1页 / 共28页
数学必修一全部知识点+经典题+解析.doc_第2页
第2页 / 共28页
点击查看更多>>
资源描述

《数学必修一全部知识点+经典题+解析.doc》由会员分享,可在线阅读,更多相关《数学必修一全部知识点+经典题+解析.doc(28页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。

1、精选优质文档-倾情为你奉上 数学必修一看题复习注:以下内容总结了数学必修一常考题型,请认真看完每一种类型的题目,题目给出了相应的解析。若解析仍然看不懂,带着问题看每道例题前面的基础知识复习。注:看题时注意动笔写一写,本次要求是熟练每种题目的做题方法,以看和记忆为主。 集合部分考点一:集合的定义及其关系基础知识复习(1)集合的概念 集合中的元素具有确定性、互异性和无序性.(2)常用数集及其记法表示自然数集,或表示正整数集,表示整数集,表示有理数集,表示实数集.(3)集合与元素间的关系对象与集合的关系是,或者,两者必居其一.(4)集合的表示法 自然语言法:用文字叙述的形式来描述集合.列举法:把集合

2、中的元素一一列举出来,写在大括号内表示集合.描述法:|具有的性质,其中为集合的代表元素.图示法:用数轴或韦恩图来表示集合.(5)集合的分类含有有限个元素的集合叫做有限集.含有无限个元素的集合叫做无限集.不含有任何元素的集合叫做空集().(6)子集、真子集、集合相等名称记号意义性质示意图子集(或A中的任一元素都属于B(1)AA(2)(3)若且,则(4)若且,则或真子集AB(或BA),且B中至少有一元素不属于A(1)(A为非空子集)(2)若且,则集合相等A中的任一元素都属于B,B中的任一元素都属于A(1)AB(2)BA(7)已知集合有个元素,则它有个子集,它有个真子集,它有个非空子集,它有非空真子

3、集.题型1:集合元素的基本特征例1(2008年江西理)定义集合运算:设,则集合的所有元素之和为( )A0;B2;C3;D6解题思路根据的定义,让在中逐一取值,让在中逐一取值,在值就是的元素解析:正确解答本题,必需清楚集合中的元素,显然,根据题中定义的集合运算知=,故应选择D 题型2:集合间的基本关系例2.1数集与之的关系是( )A;B; C;D解题思路可有两种思路:一是将和的元素列举出来,然后进行判断;也可依选择支之间的关系进行判断。解析 从题意看,数集与之间必然有关系,如果A成立,则D就成立,这不可能;同样,B也不能成立;而如果D成立,则A、B中必有一个成立,这也不可能,所以只能是CB A

4、B C D【例2.2】设集合,则下列图形能表示A与B关系的是( ).解:简单列举两个集合的一些元素,易知BA,故答案选A例2.3若集合,且,求实数的值.解:由,因此,.(i)若时,得,此时,;(ii)若时,得. 若,满足,解得.故所求实数的值为或或考点二:集合的基本运算基础知识复习1交集的定义:一般地,由所有属于A且属于B的元素所组成的集合,叫做A,B的交集记作AB(读作”A交B”),即AB=x|xA,且xB2、并集的定义:一般地,由所有属于集合A或属于集合B的元素所组成的集合,叫做A,B的并集。记作:AB(读作”A并B”),即AB=x|xA,或xB3、交集与并集的性质:AA = A,A= ,

5、 AB = BA,AA = A,A= A , AB = BA.4、全集与补集(1)全集:如果集合S含有我们所要研究的各个集合的全部元素,这个集合就可以看作一个全集。通常用U来表示。SCsAA(2)补集:设S是一个集合,A是S的一个子集(即AS),由S中所有不属于A的元素组成的集合,叫做S中子集A的补集(或余集)。记作: CSA ,即 CSA =x | xS且 xA(3)性质:CU(C UA)=A (C UA)A= (C UA)A=U(4)(C UA)(C UB)=C U(AB) (5)(C UA)(C UB)=C U(AB) 例3.1 设集合,(1) 若,求实数的值;(注:这里的I指的是交,Y

6、指的是并)(2)若,求实数的取值范围解题思路对于含参数的集合的运算,首先解出不含参数的集合,然后根据已知条件求参数。解析因为,(1)由知,从而得,即,解得或当时,满足条件;当时,满足条件所以或(2)对于集合,由因为,所以当,即时,满足条件;当,即时,满足条件;当,即时,才能满足条件,由根与系数的关系得,矛盾故实数的取值范围是例3.2已知集合,且,求实数m的取值范围.(注:这里的I指的是交,Y指的是并)-2 4 m xB A 4 m x解:由,可得.在数轴上表示集合A与集合B,如右图所示:由图形可知,.例3.3设集合,若,求实数的值.(注:这里的I指的是交,Y指的是并)解:由于,且,则有:当解得

7、,此时,不合题意,故舍去;当时,解得.不合题意,故舍去;,合题意.所以,函数部分考点一:判断两函数是否为同一个函数基础知识复习:1.构成函数的三要素:定义域、对应关系和值域注意:(1)构成函数三个要素是定义域、对应关系和值域由于值域是由定义域和对应关系决定的,所以,如果两个函数的定义域和对应关系完全一致,即称这两个函数相等(或为同一函数)。(2)两个函数相等当且仅当它们的定义域和对应关系完全一致,而与表示自变量和函数值的字母无关。 相同函数的判断方法:定义域一致;表达式相同 (两点必须同时具备)例1 试判断以下各组函数是否表示同一函数?(1),;(2),(3),(nN*);(4),;(5),解

8、题思路要判断两个函数是否表示同一个函数,就要考查函数的三要素。解析 (1)由于,故它们的值域及对应法则都不相同,所以它们不是同一函数.(2)由于函数的定义域为,而的定义域为R,所以它们不是同一函数.(3)由于当nN*时,2n1为奇数,它们的定义域、值域及对应法则都相同,所以它们是同一函数.(4)由于函数的定义域为,而的定义域为,它们的定义域不同,所以它们不是同一函数.(5)函数的定义域、值域和对应法则都相同,所以它们是同一函数.答案(1)、(2)、(4)不是;(3)、(5)是同一函数考点二:求函数的定义域、值域知识点复习:1.求函数的定义域时,一般遵循以下原则:是整式时,定义域是全体实数是分式

9、函数时,定义域是使分母不为零的一切实数是偶次根式时,定义域是使被开方式为非负值时的实数的集合对数函数的真数大于零,当对数或指数函数的底数中含变量时,底数须大于零且不等于1中,零(负)指数幂的底数不能为零没有0的0次方,也没有0的负数次方。若是由有限个基本初等函数的四则运算而合成的函数时,则其定义域一般是各基本初等函数的定义域的交集对于求复合函数定义域问题,主要记住两个个问题,1,定义域指的是一个x的取值范围。2,括号范围对括号范围。例如:f(x+1)定义域是(1,2),求f(2x)定义域,先求第一个括号的范围x+1属于(2,3),所以2x属于(2,3),所以x属于(1,3/2)。对于含字母参数

10、的函数,求其定义域,根据问题具体情况需对字母参数进行分类讨论由实际问题确定的函数,其定义域除使函数有意义外,还要符合问题的实际意义2求值域的几种方法:(1)配方法:对于(可化为)“二次函数型”的函数常用配方法(2)基本函数法:一些由基本函数复合而成的函数可以利用基本函数的值域来求,如函数就是利用函数和的值域来求。(3)判别式法:通过对二次方程的实根的判别求值域。如求函数的值域由得,若,则得,所以是函数值域中的一个值;若,则由得,故所求值域是(4)分离常数法:常用来求“分式型”函数的值域。已知cos x属于(-1,1)如求函数的值域,因为,因为cos x属于(-1,1),所以,所以,故(5)利用

11、对号函数求值域:如求函数的值域1.当时,;2.当时,若,则x+4/x的最小值是4,可得0y3/4若,则,x+4/x的最大值是-4。可得-3/4y0综上所述:此时从而得所求值域是(6)换元法:通过变量代换达到化繁为简、化难为易的目的,在一个表达式中频繁出现的部分换成t。注意换元后新元的取值范围:另*=t,则t属于(7)图象法:如果函数的图象比较容易作出,则可根据图象直观地得出函数的值域(求某些分段函数的值域常用此法)。题型1:求有解析式的函数的定义域例2.(08年湖北)函数的定义域为( )(注:这里的I指的是交,Y指的是并)A.;B.;C. ;D. 解题思路函数的定义域应是使得函数表达式的各个部

12、分都有意义的自变量的取值范围。解析欲使函数有意义,必须并且只需,故应选择题型2:求抽象函数的定义域例3(2006湖北)设,则的定义域为( )(注:这里的I指的是交,Y指的是并)A. ;B. ;C. ;D. 解题思路要求复合函数的定义域,应先求的定义域。解析由得,的定义域为,故解得。故的定义域为.选B.题型3;求函数的值域例4 求下列函数的定义域与值域:(1); (2).解:(1)要使函数有意义,则,解得. 所以原函数的定义域是.,所以值域为.(2). 所以原函数的定义域是R,值域是.考点三:映射的概念基础知识复习映射的概念 设、是两个集合,如果按照某种对应法则,对于集合中任何一个元素,在集合中

13、都有唯一的元素和它对应,那么这样的对应(包括集合,以及到的对应法则)叫做集合到的映射,记作给定一个集合到集合的映射,且如果元素和元素对应,那么我们把元素叫做元素的象,元素叫做元素的原象例5 (06陕西)为确保信息安全,信息需加密传输,发送方由明文密文(加密),接收方由密文明文(解密),已知加密规则为:明文对应密文例如,明文对应密文当接收方收到密文时,则解密得到的明文为( )A;B;C;D解题思路 密文与明文之间是有对应规则的,只要按照对应规则进行对应即可。解析 当接收方收到密文14,9,23,28时,有,解得,解密得到的明文为C考点四:函数的表达式题型1:由复合函数的解析式求原来函数的解析式例

14、6 (04湖北改编)已知=,则的解析式可取为 解题思路这是复合函数的解析式求原来函数的解析式,应该首选换元法解析 令,则, .故应填题型2:求二次函数的解析式 例7 (普宁市城东中学09届高三第二次月考)二次函数满足,且。求的解析式;在区间上,的图象恒在的图象上方,试确定实数的范围。解题思路(1)由于已知是二次函数,故可应用待定系数法求解;(2)用数表示形,可得求对于恒成立,从而通过分离参数,求函数的最值即可。解析设,则与已知条件比较得:解之得,又,由题意得:即对恒成立,易得考点五:分段函数基础知识复习:在定义域的不同部分上有不同的解析表达式的函数。在不同的范围里求函数值时必须把自变量代入相应

15、的表达式。分段函数的解析式不能写成几个不同的方程,而应写成函数值几种不同的表达式并用一个左大括号括起来,并分别注明各部分的自变量的取值情况注意:(1)分段函数是一个函数,不要把它误认为是几个函数;(2)分段函数的定义域是各段定义域的并集,值域是各段值域的并集题型1:根据分段函数的图象写解析式例8 (07年湖北)为了预防流感,某学校对教室用药物消毒法进行消毒。已知药物释放过程中,室内每立方米空气中含药量y(毫克)与时间t(小时)成正比;药物释放完毕后,y与t的函数关系式为(a为常数),如图所示,根据图中提供的信息,回答下列问题:()从药物释放开妈,每立方米空气中的含药量y(毫克)与时间t(小时)

16、之间的函数关系式为 ;()据测定,当空气中每立方米的含药量降低到0.25毫克以下时,学生方可进教室,那么从药物释放开始,至少需要经过 小时后,学生才能回到教室。思路点拨根据题意,药物释放过程的含药量y(毫克)与时间t是一次函数,药物释放完毕后,y与t的函数关系是已知的,由特殊点的坐标确定其中的参数,然后再由所得的表达式解决()解析 ()观察图象,当时是直线,故;当时,图象过所以,即,所以(),所以至少需要经过小时题型2:由分段函数的解析式画出它的图象例9 (2006上海)设函数,在区间上画出函数的图像。思路点拨需将来绝对值符号打开,即先解,然后依分界点将函数分段表示,再画出图象。解析 ,如右上

17、图.考点六 函数的单调性基础知识复习:定义及判定方法函数的性 质定义图象判定方法函数的单调性如果对于属于定义域I内某个区间上的任意两个自变量的值x1、x2,当x1 x2时,都有f(x1)f(x2),那么就说f(x)在这个区间上是增函数(1)利用定义(2)利用已知函数的单调性(3)利用函数图象(在某个区间图 象上升为增)(4)利用复合函数如果对于属于定义域I内某个区间上的任意两个自变量的值x1、x2,当x1f(x2),那么就说f(x)在这个区间上是减函数(1)利用定义(2)利用已知函数的单调性(3)利用函数图象(在某个区间图象下降为减)(4)利用复合函数在公共定义域内,两个增函数的和是增函数,两

18、个减函数的和是减函数,增函数减去一个减函数为增函数,减函数减去一个增函数为减函数对于复合函数,令,若为增,为增,则为增;若为减,为减,则为增;若为增,为减,则为减;若为减,为增,则为减(2)打“”函数的图象与性质yxo分别在、上为增函数,分别在、上为减函数题型1:讨论函数的单调性 例9.1 试用函数单调性的定义判断函数在区间(0,1)上的单调性.解:任取(0,1),且. 则. 由于,故,即. 所以,函数在(0,1)上是减函数. 例9.2 求下列函数的单调区间:(1);(2).解:(1),其图象如右. 由图可知,函数在上是增函数,在上是减函数.(2),其图象如右.由图可知,函数在、上是增函数,在

19、、上是减函数.例9.3.已知,指出的单调区间.解: , 把的图象沿x轴方向向左平移2个单位,再沿y轴向上平移3个单位,得到的图象,如图所示.由图象得在单调递增,在上单调递增.题型2:研究抽象函数的单调性例10 定义在R上的函数,当x0时,且对任意的a、bR,有f(a+b)=f(a)f(b).(1)求证:f(0)=1;(2)求证:对任意的xR,恒有f(x)0;(3)求证:f(x)是R上的增函数;(4)若f(x)f(2xx2)1,求x的取值范围.解题思路抽象函数问题要充分利用“恒成立”进行“赋值”,从关键等式和不等式的特点入手。解析(1)证明:令a=b=0,则f(0)=f 2(0).又f(0)0,

20、f(0)=1.(2)证明:当x0时,x0,f(0)=f(x)f(x)=1.f(x)=0.又x0时f(x)10,xR时,恒有f(x)0.(3)证明:设x1x2,则x2x10.f(x2)=f(x2x1+x1)=f(x2x1)f(x1).x2x10,f(x2x1)1.又f(x1)0,f(x2x1)f(x1)f(x1).f(x2)f(x1).f(x)是R上的增函数.(4)解:由f(x)f(2xx2)1,f(0)=1得f(3xx2)f(0).又f(x)是R上的增函数,3xx20.0x3.考点七 最值的求法题型1:求分式函数的最值例11 (2000年上海)已知函数当时,求函数的最小值; 解题思路当时,这是

21、典型的“对钩函数”,欲求其最小值,可以考虑均值不等式或导数;解析当时,。在区间上为增函数。 在区间上的最小值为。题型2:还原法求最值例11.1 求函数的最小值. 解:令,则,所以,在时是增函数,当时,故函数的最小值为2.考点八 判断函数的奇偶性及其应用基础知识复习:定义及判定方法函数的性 质定义图象判定方法函数的奇偶性如果对于函数f(x)定义域内任意一个x,都有f(x)=f(x),那么函数f(x)叫做奇函数(1)利用定义(要先判断定义域是否关于原点对称)(2)利用图象(图象关于原点对称)如果对于函数f(x)定义域内任意一个x,都有f(x)=f(x),那么函数f(x)叫做偶函数(1)利用定义(要

22、先判断定义域是否关于原点对称)(2)利用图象(图象关于y轴对称)若函数为奇函数,且在处有定义,则奇函数在轴两侧相对称的区间增减性相同,偶函数在轴两侧相对称的区间增减性相反在公共定义域内,两个偶函数(或奇函数)的和(或差)仍是偶函数(或奇函数),两个偶函数(或奇函数)的积(或商)是偶函数,一个偶函数与一个奇函数的积(或商)是奇函数题型1:判断有解析式的函数的奇偶性例12 判断下列函数的奇偶性:(1)f(x)=|x+1|x1|;(2)f(x)=(x1);(3);(4)思路点拨判断函数的奇偶性应依照定义解决,但都要先考查函数的定义域。解析 (1)函数的定义域x(,+),对称于原点.f(x)=|x+1

23、|x1|=|x1|x+1|=(|x+1|x1|)=f(x),f(x)=|x+1|x1|是奇函数.(2)先确定函数的定义域.由0,得1x1,其定义域不对称于原点,所以f(x)既不是奇函数也不是偶函数.(3)去掉绝对值符号,根据定义判断.由得故f(x)的定义域为1,0)(0,1,关于原点对称,且有x+20.从而有f(x)= =,f(x)=f(x)故f(x)为奇函数.(4)函数f(x)的定义域是(,0)(0,+),并且当x0时,x0,f(x)=(x)1(x)=x(1+x)=f(x)(x0).当x0时,x0,f(x)=x(1x)=f(x)(x0).故函数f(x)为奇函数. 例13 (09年山东梁山)定

24、义在区间上的函数f (x)满足:对任意的,都有. 求证f (x)为奇函数;思路点拨欲证明为奇函数,就要证明,但这是抽象函数,应设法充分利用条件“对任意的,都有”中的进行合理“赋值”解析令x = y = 0,则f (0) + f (0) = f (0) = 0令x(1, 1) x(1, 1) f (x) + f (x) = f () = f (0) = 0 f (x) =f (x) f (x) 在(1,1)上为奇函数考点九 函数奇偶性、单调性的综合应用例14 (普宁市城东中学09)已知奇函数是定义在上的减函数,若,求实数的取值范围。思路点拨欲求的取值范围,就要建立关于的不等式,可见,只有从出发,

25、所以应该利用的奇偶性和单调性将外衣“”脱去。解析 是定义在上奇函数对任意有由条件得=是定义在上减函数,解得实数的取值范围是 例15设函数f(x)是定义在R上的偶函数,并在区间(,0)内单调递增,f(2a2+a+1)f(3a22a+1).求a的取值范围,并在该范围内求函数y=()的单调递减区间.思路点拨欲由f(2a2+a+1)f(3a22a+1)求a的取值范围,就要设法利用函数f(x)的单调性。而函数y=()是一个复合函数,应该利用复合函数单调性的判定方法解决解析设0x1x2,则x2x10,f(x)在区间(,0)内单调递增,f(x2)f(x1),f(x)为偶函数,f(x2)=f(x2),f(x1

26、)=f(x1),f(x2)f(x1).f(x)在(0,+)内单调递减.由f(2a2+a+1)3a22a+1.解之,得0a3.又a23a+1=(a)2.函数y=()的单调减区间是结合0a0且a1;2. 真数N0 3. 注意对数的书写格式2、两个重要对数:(1)常用对数:以10为底的对数, ;(2)自然对数:以无理数e 为底的对数的对数 , 3、对数式与指数式的互化对数式 指数式对数底数 a 幂底数对数 x 指数真数 N 幂结论:(1)负数和零没有对数(2)logaa=1, loga1=0 特别地, lg10=1, lg1=0 , lne=1, ln1=0(3) 对数恒等式:对数的运算性质如果 a

27、 0,a 1,M 0, N 0 有:1、 两个正数的积的对数等于这两个正数的对数和2 、 两个正数的商的对数等于这两个正数的对数差3 、 一个正数的n次方的对数等于这个正数的对数n倍说明:1) 简易语言表达:”积的对数=对数的和”2) 有时可逆向运用公式3) 真数的取值必须是(0,)4) 特别注意: 注意:换底公式利用换底公式推导下面的结论 考点二 指数函数基础知识复习:1、指数函数的概念:一般地,函数 叫做指数函数,其中x是自变量,函数的定义域为R注意:指数函数的底数的取值范围,底数不能是负数、零和1即 a0且a12、指数函数的图象和性质0a1 图像性质定义域R , 值域(0,+)(1)过定

28、点(0,1),即x=0时,y=1(2)在R上是减函数(2)在R上是增函数(3)当x0时,0y1;当x1(3)当x0时,y1;当x0时,0y1图象特征函数性质共性向x轴正负方向无限延伸函数的定义域为R函数图象都在x轴上方函数的值域为R+图象关于原点和y轴不对称非奇非偶函数函数图象都过定点(0,1)过定点(0,1)0a0时,0y1;在第二象限内的图象纵坐标都大于1当x1图象上升趋势是越来越缓函数值开始减小极快,到了某一值后减小速度较慢;a1自左向右看,图象逐渐上升增函数在第一象限内的图象纵坐标都大于1当x0时,y1;在第二象限内的图象纵坐标都小于1当x0时,0y0时,a,N在1的同侧;当b0且y1

29、.(2)y4x+2x+1+1的定义域为R.2x0,y4x+2x+1+1(2x)2+22x+1(2x+1)21.y4x+2x+1+1的值域为yy1.题型四 最值问题例4函数在区间上有最大值14,则a的值是_分析:令可将问题转化成二次函数的最值问题,需注意换元后的取值范围解:令,则,函数可化为,其对称轴为当时,即当时,解得或(舍去);当时,即, 时,解得或(舍去),a的值是3或题型五 解指数方程例5解方程解:原方程可化为,令,上述方程可化为,解得或(舍去),经检验原方程的解是题型六 图象变换及应用问题例6为了得到函数的图象,可以把函数的图象()A向左平移9个单位长度,再向上平移5个单位长度B向右平

30、移9个单位长度,再向下平移5个单位长度C向左平移2个单位长度,再向上平移5个单位长度D向右平移2个单位长度,再向下平移5个单位长度分析:注意先将函数转化为,再利用图象的平移规律进行判断解:,把函数的图象向左平移2个单位长度,再向上平移5个单位长度,可得到函数的图象,故选(C)题型七 指数函数与复合函数基础知识参照函数的单调性中复合函数的应用例7 求函数y的单调区间.这是复合函数求单调区间的问题可设y,ux2-3x+2,其中y为减函数ux2-3x+2的减区间就是原函数的增区间(即减减增)ux2-3x+2的增区间就是原函数的减区间(即减、增减)解:设y,ux2-3x+2,y关于u递减,当x(-,)

31、时,u为减函数,y关于x为增函数;当x,+)时,u为增函数,y关于x为减函数.题型八 指数函数与单调性及奇偶性例8 已知函数f(x)=a(aR),(1) 求证:对任何aR,f(x)为增函数(2) 若f(x)为奇函数时,求a的值。(1)证明:设x1x2f(x2)f(x1)=0故对任何aR,f(x)为增函数(2),又f(x)为奇函数 得到。即题型九 指数函数变换图像例9 函数yax(a1)的图像是( )本题主要考查指数函数的图像和性质、函数奇偶性的函数图像,以及数形结合思想和分类讨论思想.解法1:(分类讨论):去绝对值,可得y又a1,由指数函数图像易知,应选B.解法2:因为yax是偶函数,又a1,

32、所以当x0时,yax是增函数;x0时,ya-x是减函数.应选B.考点三 对数函数1、对数函数的概念:函数 (a0,且a1) 叫做对数函数,其中x是自变量,函数的定义域是(0,+)注意:(1) 对数函数的定义与指数函数类似,都是形式定义,注意辨别。如:, 都不是对数函数,而只能称其为对数型函数(2) 对数函数对底数的限制:a0,且a12、对数函数的图像与性质:对数函数(a0,且a1)0 a 1a 1图像yx0(1,0)yx0(1,0)性质定义域:(0,) 值域:R过点(1 ,0), 即当x 1时,y0在(0,+)上是减函数在(0,+)上是增函数当x1时,y0当x=1时,y=0当0x0 当x1时,

33、y0当x=1时,y=0当0x1时,y0;当a,b不同在(0,1) 内,或不同在(1,+) 内时,有logab0得,函数的定义域是;(2)由得,函数的定义域是;(3)由9-得-3,函数的定义域是题型二 反函数例2求函数和函数的反函数。解:(1) ; (2) 题型三 对数大小比较例3.1比较下列各组数中两个值的大小: (1),; (2),; (3),.解:(1)对数函数在上是增函数,于是;(2)对数函数在上是减函数,于是;(3)当时,对数函数在上是增函数,于是, 当时,对数函数在上是减函数,于是例3.2比较下列比较下列各组数中两个值的大小:(1),; (2),; (3),; (4),解:(1),

34、,; (2), , (3), , , (4), 例3.3已知,比较,的大小。解:, ,当,时,得, 当,时,得, 当,时,得, 综上所述,的大小关系为或或题型四 对数函数求定义域和值域例41 .函数y=logx1(3x)的定义域是 如果对数有意义,求x的取值范围;解:要使原函数有意义,则解之得: 原函数的定义域为-7,-6)(-6,-5) (-1,+)例42函数的定义域为一切实数,求k的取值范围。例4.3 求下列函数的值域:(1);(2);(3)(且)解:(1)令,则, , ,即函数值域为 (2)令,则, , 即函数值域为 (3)令, 当时, 即值域为, 当时, 即值域为例4.4 设函数 ,若

35、 的值域为 ,求实数 的取值范围分析:由值域为 和对数函数的单调性可将问题转化为 能取遍所有正实数的问题解: 令 ,依题意 应取遍一切正实数即函数值域是正实数集的子集则有 或 ,解得 题型五 对数函数与奇偶性例4.5 已知函数f(x)=lg(a21)x2+(a+1)x+1.(1)若f(x)的定义域为R,求实数a的取值范围;(2)若f(x)的值域为R,求实数a的取值范围.解:(1)(a21)x2+(a+1)x+10对xR恒成立.a21=0时,a=1,经检验a=1时恒成立;a210时, a1或a ,a1或a .(2)a21=0,即a=1时满足值域为R;a210时, 1a .1a .例5判断函数的奇偶性。解:恒成立,故的定义域为, ,所以,为奇函数。题型六 对数函数与单调性例6.1求函数的单调区间。解:令在上递增,在上递减,又, 或,故在上递增,在上递减, 又为减函数,所以,函数在上递增,在上递减。说明:利用对数函数性质判断函数单调性时,首先要考察函数的定义域,再利用复合函数单调性的判断方法来求单调区间。例6.2若函数在区间上是增函数,的取值范围。解:令, 函数为减函数,在区

展开阅读全文
相关资源
相关搜索

当前位置:首页 > 教育专区 > 教案示例

本站为文档C TO C交易模式,本站只提供存储空间、用户上传的文档直接被用户下载,本站只是中间服务平台,本站所有文档下载所得的收益归上传人(含作者)所有。本站仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。若文档所含内容侵犯了您的版权或隐私,请立即通知淘文阁网,我们立即给予删除!客服QQ:136780468 微信:18945177775 电话:18904686070

工信部备案号:黑ICP备15003705号© 2020-2023 www.taowenge.com 淘文阁