《八年级数学勾股定理(共4页).doc》由会员分享,可在线阅读,更多相关《八年级数学勾股定理(共4页).doc(4页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。
1、精选优质文档-倾情为你奉上181 勾股定理(四)一、教学目标1会用勾股定理解决较综合的问题。2树立数形结合的思想。二、重点、难点1重点:勾股定理的综合应用。2难点:勾股定理的综合应用。三、例题的意图分析例1(补充)“双垂图”是中考重要的考点,熟练掌握“双垂图”的图形结构和图形性质,通过讨论、计算等使学生能够灵活应用。目前“双垂图”需要掌握的知识点有:3个直角三角形,三个勾股定理及推导式BC2-BD2=AC2-AD2,两对相等锐角,四对互余角,及30或45特殊角的特殊性质等。例2(补充)让学生注意所求结论的开放性,根据已知条件,作适当辅助线求出三角形中的边和角。让学生掌握解一般三角形的问题常常通
2、过作高转化为直角三角形的问题。使学生清楚作辅助线不能破坏已知角。例3(补充)让学生掌握不规则图形的面积,可转化为特殊图形求解,本题通过将图形转化为直角三角形的方法,把四边形面积转化为三角形面积之差。在转化的过程中注意条件的合理运用。让学生把前面学过的知识和新知识综合运用,提高解题的综合能力。例4(教材P76页探究3)让学生利用尺规作图和勾股定理画出数轴上的无理数点,进一步体会数轴上的点与实数一一对应的理论。四、课堂引入复习勾股定理的内容。本节课探究勾股定理的综合应用。五、例习题分析例1(补充)1已知:在RtABC中,C=90,CDBC于D,A=60,CD=,求线段AB的长。分析:本题是“双垂图
3、”的计算题,“双垂图”是中考重要的考点,所以要求学生对图形及性质掌握非常熟练,能够灵活应用。目前“双垂图”需要掌握的知识点有:3个直角三角形,三个勾股定理及推导式BC2-BD2=AC2-AD2,两对相等锐角,四对互余角,及30或45特殊角的特殊性质等。 要求学生能够自己画图,并正确标图。引导学生分析:欲求AB,可由AB=BD+CD,分别在两个三角形中利用勾股定理和特殊角,求出BD=3和AD=1。或欲求AB,可由,分别在两个三角形中利用勾股定理和特殊角,求出AC=2和BC=6。例2(补充)已知:如图,ABC中,AC=4,B=45,A=60,根据题设可知什么?分析:由于本题中的ABC不是直角三角形
4、,所以根据题设只能直接求得ACB=75。在学生充分思考和讨论后,发现添置AB边上的高这条辅助线,就可以求得AD,CD,BD,AB,BC及SABC。让学生充分讨论还可以作其它辅助线吗?为什么?小结:可见解一般三角形的问题常常通过作高转化为直角三角形的问题。并指出如何作辅助线?解略。例3(补充)已知:如图,B=D=90,A=60,AB=4,CD=2。求:四边形ABCD的面积。分析:如何构造直角三角形是解本题的关键,可以连结AC,或延长AB、DC交于F,或延长AD、BC交于E,根据本题给定的角应选后两种,进一步根据本题给定的边选第三种较为简单。教学中要逐层展示给学生,让学生深入体会。解:延长AD、B
5、C交于E。A=60,B=90,E=30。AE=2AB=8,CE=2CD=4,BE2=AE2-AB2=82-42=48,BE=。DE2= CE2-CD2=42-22=12,DE=。S四边形ABCD=SABE-SCDE=ABBE-CDDE=小结:不规则图形的面积,可转化为特殊图形求解,本题通过将图形转化为直角三角形的方法,把四边形面积转化为三角形面积之差。例4(教材P76页探究3)分析:利用尺规作图和勾股定理画出数轴上的无理数点,进一步体会数轴上的点与实数一一对应的理论。变式训练:在数轴上画出表示的点。六、课堂练习1ABC中,AB=AC=25cm,高AD=20cm,则BC= ,SABC= 。2AB
6、C中,若A=2B=3C,AC=cm,则A= 度,B= 度,C= 度,BC= ,SABC= 。3ABC中,C=90,AB=4,BC=,CDAB于D,则AC= ,CD= ,BD= ,AD= ,SABC= 。4已知:如图,ABC中,AB=26,BC=25,AC=17,求SABC。七、课后练习1在RtABC中,C=90,CDBC于D,A=60,CD=,AB= 。2在RtABC中,C=90,SABC=30,c=13,且ab,则a= ,b= 。3已知:如图,在ABC中,B=30,C=45,AC=,求(1)AB的长;(2)SABC。4在数轴上画出表示的点。课后反思:八、参考答案:课堂练习:130cm,300cm2;290,60,30,4,;32,3,1,;4作BDAC于D,设AD=x,则CD=17-x,252-x2=262-(17-x)2,x=7,BD=24,SABC=ACBD=254;课后练习:14; 25,12;3提示:作ADBC于D,AD=CD=2,AB=4,BD=,BC=2+,SABC= =2+;4略。专心-专注-专业