《2017年全国1卷高考题正态分布题目.docx》由会员分享,可在线阅读,更多相关《2017年全国1卷高考题正态分布题目.docx(4页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。
1、精选优质文档-倾情为你奉上(2017年全国1卷高考题)19(12分)为了监控某种零件的一条生产线的生产过程,检验员每天从该生产线上随机抽取16个零件,并测量其尺寸(单位:cm)根据长期生产经验,可以认为这条生产线正常状态下生产的零件的尺寸服从正态分布(1)假设生产状态正常,记X表示一天内抽取的16个零件中其尺寸在之外的零件数,求及的数学期望;(2)一天内抽检零件中,如果出现了尺寸在之外的零件,就认为这条生产线在这一天的生产过程可能出现了异常情况,需对当天的生产过程进行检查()试说明上述监控生产过程方法的合理性;()下面是检验员在一天内抽取的16个零件的尺寸:9.9510.129.969.961
2、0.019.929.9810.0410.269.9110.1310.029.2210.0410.059.95经计算得,其中为抽取的第个零件的尺寸,用样本平均数作为的估计值,用样本标准差作为的估计值,利用估计值判断是否需对当天的生产过程进行检查?剔除之外的数据,用剩下的数据估计和(精确到0.01)附:若随机变量服从正态分布,则,19.【解】(1)抽取的一个零件的尺寸在之内的概率为0.9974,从而零件的尺寸在之外的概率为0.0026,故.因此.的数学期望为.(2)(i)如果生产状态正常,一个零件尺寸在之外的概率只有0.0026,一天内抽取的16个零件中,出现尺寸在之外的零件的概率只有0.0408
3、,发生的概率很小.因此一旦发生这种情况,就有理由认为这条生产线在这一天的生产过程学科&网可能出现了异常情况,需对当天的生产过程进行检查,可见上述监控生产过程的方法是合理的.(ii)由,得的估计值为,的估计值为,由样本数据可以看出有一个零件的尺寸在之外,因此需对当天的生产过程进行检查.剔除之外的数据9.22,剩下数据的平均数为,因此的估计值为10.02.,剔除之外的数据9.22,剩下数据的样本方差为,因此的估计值为18. (本小题满分12分)从某企业的某种产品中抽取500件,测量这些产品的一项质量指标值,由测量结果得如下频率分布直方图:()求这500件产品质量指标值的样本平均数和样本方差(同一组
4、数据用该区间的中点值作代表);()由频率分布直方图可以认为,这种产品的质量指标值服从正态分布,其中近似为样本平均数,近似为样本方差.(i)利用该正态分布,求;(ii)某用户从该企业购买了100件这种产品,记表示这100件产品中质量指标值为于区间(187.8,212.2)的产品件数,利用(i)的结果,求.附:12.2.若,则=0.6826,=0.9544.(18)解:(I)抽取产品的质量指标值的样本平均数和样本方差分别为 =200 6分(II)(i)由(I)知,从而 9分(ii)由(i)知,一件产品的质量指标值位于区间(187.8,212.2)的概率为0.682 6,依题意知X-B(100,0.682 6),所以 专心-专注-专业