《高一三角函数知识点加练习题.doc》由会员分享,可在线阅读,更多相关《高一三角函数知识点加练习题.doc(12页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。
1、精选优质文档-倾情为你奉上三角函数一、任意角的概念与弧度制1、将沿轴正向的射线,围绕原点旋转所形成的图形称作角. 逆时针旋转为正角,顺时针旋转为负角,不旋转为零角2、同终边的角可表示为轴上角:轴上角:3、第一象限角: 第二象限角: 第三象限角: 第四象限角:4、区分第一象限角、锐角以及小于的角 第一象限角: 锐角: 小于的角:5、 若为第二象限角,那么为第几象限角? 所以在第一、三象限6、 弧度制:弧长等于半径时,所对的圆心角为弧度的圆心角,记作.7、角度与弧度的转化: 8、角度与弧度对应表:角度弧度9、弧长与面积计算公式 弧长:;面积:,注意:这里的均为弧度制.二、任意角的三角函数1、正弦:
2、;余弦;正切 其中为角终边上任意点坐标,.2、三角函数值对应表:度弧度无无3、三角函数在各象限中的符号口诀:一全正,二正弦,三正切,四余弦.(简记为“全s t c”)例题:1.已知为第二象限角,求 、 、的值 2.已知为第四象限角,求 、 、的值 方法:画直角三角形 利用勾股定理先算大小后看正负4、同角三角函数基本关系式 (,三式之间可以互相表示)例题:1.已知的值为_.已知,则1.=_.2.=_. 3.=_.(“1”的代换)2.已知三角函数和的和或差的形式求. 方法:等式两边完全平方(注意三角函数中判断正负利用角的范围进行取舍)例题:已知,+=,求. -6、 诱导公式口诀:奇变偶不变,符号看
3、象限(所谓奇偶指的是中整数的奇偶性,把看作锐角);.公式(一):与;.公式(二):与;.公式(三):与;.公式(四):与;.公式(五):与;.公式(六):与;.公式(七):与;.公式(八):与;例题1. 的值等于( )A. B. C. D. 2. 若,则等于( )A. B. C. D. 3. 已知求的值。三、 三角函数的图像与性质1、将函数的图象上所有的点,向左(右)平移个单位长度,得到函数的图象;再将函数的图象上所有点的横坐标伸长(缩短)到原来的倍(纵坐标不变),得到函数的图象;再将函数的图象上所有点的纵坐标伸长(缩短)到原来的倍(横坐标不变),得到函数的图象。2、函数的性质:振幅:;周期:
4、;频率:;相位:;初相:。3、 周期函数:一般地,对于函数,如果存在一个非零常数,使得定义域内的每一个值,都满足,那么函数就叫做周期函数,叫做该函数的周期.4、 对称轴:令,得 对称中心:,得,; 对称轴:令,得;对称中心:,得,;周期公式:函数及的周期 (A、为常数,且A0).函数的周期 (A、为常数,且A0).5、三角函数的图像与性质表格函数性质图像定义域值域最值当时,;当时,当时,;当时,既无最大值也无最小值周期性奇偶性奇函数偶函数奇函数单调性在上是增函数;在上是减函数在上是增函数;在上是减函数在上是增函数对称性对称中心对称轴对称中心对称轴对称中心无对称轴6. 五点法作的简图,设,取0、
5、来求相应的值以及对应的y值再描点作图。7. 函数的变换:(1)函数的平移变换 将图像沿轴向左(右)平移个单位(左加右减) 将图像沿轴向上(下)平移个单位(上加下减)例1、把函数图像上所有的点向左平移个单位,所得函数的解析式为 _2、把函数图像上所有的点向右平移个单位,所得函数的解析式为 _(2)函数的伸缩变换: 将图像纵坐标不变,横坐标缩到原来的倍(缩短, 伸长) 将图像横坐标不变,纵坐标伸长到原来的A倍(伸长,缩短)例1.对于函数的图像是将的图像上所有点的_(“横”或”纵”)坐标_(伸长或缩短)为原来的_而得到的图像。2.由函数的图像得到的图像,应该是将函数上所有点的_(“横”或“纵”)坐标
6、_(“伸长”或“缩短”)为原来的_(横坐标不变)而得到的图像。3.对于函数的图像是将的图像上所有点的_(“横”或“纵”)坐标_(“伸长”或“缩短”)为原来的_(纵坐标不变)而得到的图像。(3)函数的对称变换: ) 将图像绕轴翻折180(整体翻折)(对三角函数来说:图像关于轴对称) 将图像绕轴翻折180(整体翻折)(对三角函数来说:图像关于轴对称) 将图像在轴右侧保留,并把右侧图像绕轴翻折到左侧(偶函数局部翻折) 保留在轴上方图像,轴下方图像绕轴翻折上去(局部翻动)例1.为得到函数的图象,只需将函数的图象A向左平移个长度单位B向右平移个长度单位C向左平移个长度单位D向右平移个长度单位分析:先统一
7、函数名称,在根据平移的法则解决2函数在区间内的图象是2、用两种方法将函数的图像变换为函数的图像方法一:方法二:总结:方法一: 先伸缩后平移 方法二:先平移后伸缩四、三角恒等变换1. 两角和与差的正弦、余弦、正切公式: (1) (2)(3)(4)(5) (6) (7) =(其中,辅助角所在象限由点所在的象限决定, ,该法也叫合一变形).(8) 例1已知,则的值是ABCD 分析:所求的,将已知条件分拆整合后解决2若则=A B C D2. 二倍角公式(1) (2)(3) 3. 降幂公式:(1) (2) 4. 升幂公式(1) (2)(3) (4)(5)5. 半角公式(符号的选择由所在的象限确定)(1)
8、, (2) ,(3)6. 万能公式: (1), (2),(3)7.三角变换:三角变换是运算化简过程中运用较多的变换,提高三角变换能力,要学会创设条件,灵活运用三角公式,掌握运算、化简的方法技能。(1) 角的变换:角之间的和差、倍半、互补、互余等关系对角变换,还可作添加、删除角的恒等变形(2) 函数名称变换:三角变形中常常需要变函数名称为同名函数。采用公式: 其中,比如: (3)注意“凑角”运用:, , 例如:已知,,则(4)常数代换:在三角函数运算、求值、证明中有时候需将常数转化为三角函数,特别是常数“1”可转化为“”(5)幂的变换:对次数较高的三角函数式一般采用降幂处理,有时需要升幂例如:常
9、用升幂化为有理式。(6)公式变形:三角公式是变换的依据,应熟练掌握三角公式的顺用、逆用及变形。(7)结构变化:在三角变换中常常对条件、结论的结构进行调整,或重新分组,或移项,或变乘为除,或求差等等。在形式上有时需要和差与积的互化、分解因式、配方等。(8)消元法:如果所要证明的式子中不含已知条件中的某些变量,可用此法(9)思路变换:如果一种思路无法再走下去,试着改变自己的思路,通过分析比较去选择更合适、简捷的方法去解题目。(10)利用方程思想解三角函数。如对于以下三个式子: ,已知其中一个式子的值,其余二式均可求出,且必要时可以换元。例 设锐角的内角的对边分别为,.()求的大小;()求的取值范围
10、.8.函数的最值(几种常见的函数及其最值的求法):(或型:利用三角函数的值域,须注意对字母的讨论型:引进辅助角化成再利用有界性型:配方后求二次函数的最值,应注意的约束 型:反解出,化归为解决 型:常用到换元法:,但须注意的取值范围:。例1:求函数的最大值和最小值。2已知函数,且 (1)求实数,的值;(2)求函数的最大值及取得最大值时的值9.三角形中常用的关系:, , , 10. 常见数据:, , 作业:1函数是上的偶函数,则的值是( )ABC.D.2将函数的图象上所有点的横坐标伸长到原来的2倍(纵坐标不变),再将所得的图象向左平移个单位,得到的图象对应的僻析式是( )ABC.D.3、函数的最小
11、正周期是( )ABCD4已知函数的图象关于直线对称,则可能是( )A.B.C.D.二、填空题1关于的函数有以下命题: 对任意,都是非奇非偶函数;不存在,使既是奇函数,又是偶函数;存在,使是偶函数;对任意,都不是奇函数.其中一个假命题的序号是,因为当时,该命题的结论不成立.2若在区间上的最大值是,则=_。3设,若函数在上单调递增,则的取值范围是_。三、简答题1.已知函数的最大值为,最小值为,求函数的最小正周期,值域。2.设是某港口水的深度关于时间t(时)的函数,其中,下表是该港口某一天从0至24时记录的时间t与水深y的关系.t03691215182124y1215.112.19.111.914.911.98.912.1经长期观察,函数的图象可以近似地看成函数的图象.根据上述数据,函数的解析式为()A BC D2、从高出海面hm的小岛A处看正东方向有一只船B,俯角为看正南方向的一船C的俯角为,则此时两船间的距离为().A B C D3、如图表示电流 I 与时间t的函数关系式: I =在同一周期内的图象。(1)根据图象写出I =的解析式;(2)为了使I =中t在任意段秒的时间内电流I能同时取得最大值和最小值,那么正整数的最小值是多少?专心-专注-专业