《高一数学函数和不等式中恒成立问题的教案(共6页).docx》由会员分享,可在线阅读,更多相关《高一数学函数和不等式中恒成立问题的教案(共6页).docx(6页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。
1、精选优质文档-倾情为你奉上函数和不等式结的恒成立问题的解法“含参不等式恒成立问题”把不等式、函数、三角、几何等内容有机地结合起来,其以覆盖知识点多,综合性强,解法灵活等特点而倍受高考、竞赛命题者的青睐。另一方面,在解决这类问题的过程中涉及的“函数与方程”、“化归与转化”、“数形结合”、“分类讨论”等数学思想对锻炼学生的综合解题能力,培养其思维的灵活性、创造性都有着独到的作用恒成立问题的基本类型:一、判别式法若所求问题可转化为二次不等式,则可考虑应用判别式法解题。一般地,对于二次函数,有1)对恒成立; 2)对恒成立 例1:若不等式的解集是R,求m的范围。 例2 设函数f(x) mx2-mx-1(
2、1)若对于一切实数x,f(x)0恒成立,求m的取值范围;(2)对于x1,3,f(x)m5恒成立,求m的取值范围二、最值法 将不等式恒成立问题转化为求函数最值问题的一种处理方法,其一般类型有:1)恒成立2)恒成立例1、若时,不等式恒成立,求的取值范围。例2设,当时,恒成立,求实数的取值范围。巩固已知函数,若对任意,恒成立,求实数的取值范围。 练习2 已知,若恒成立,求a的取值范围.三、分离变量法若所给的不等式能通过恒等变形使参数与主元分离于不等式两端,从而问题转化为求主元函数的最值,进而求出参数范围。这种方法本质也还是求最值,但它思路更清晰,操作性更强。一般地有:1)恒成立2)恒成立例3已知时,
3、不等式恒成立,求的取值范围。巩固 已知函数时恒成立,求实数的取值范围。注:分离参数后,方向明确,思路清晰能使问题顺利得到解决。四、变换主元法处理含参不等式恒成立的某些问题时,若能适时的把主元变量和参数变量进行“换位”思考,往往会使问题降次、简化。例1对任意,不等式恒成立,求的取值范围。2. 若不等式对满足的所有都成立,求的取值范围。四、数形结合法数学家华罗庚曾说过:“数缺形时少直观,形缺数时难入微”,这充分说明了数形结合思想的妙处,在不等式恒成立问题中它同样起着重要作用。我们知道,函数图象和不等式有着密切的联系:1)函数图象恒在函数图象上方;2)函数图象恒在函数图象下上方。例.设 , ,若恒有
4、成立,求实数的取值范围. 例2 已知函数,若在区间上,的图象位于函数f(x)的上方,求k的取值范围.练习 已知函数,若在区间上,的图象位于函数f(x)的上方,求k的取值范围 由此可以看出,对于参数不能单独放在一侧的,可以利用函数图象来解。利用函数图象解题时,思路是从边界处(从相等处)开始形成的。综合练习;例6 已知f(x)是定义在-1,1上的奇函数,且f(1)=1,若,若对于所有的恒成立,求实数t的取值范围. 课后作业:若不等式对任意R恒成立,则的取值范围是 已知函数f(x)=1/a-1/x(a0,x0)(1)若f(x)在m,n上的值域是m,n,求a的取值范围,并求相应的m,n的值 (2)若f(x)2x在(0,+无穷大)上恒成立,求a的取值范围 专心-专注-专业