高一数学反函数教案(共8页).doc

上传人:飞****2 文档编号:15028230 上传时间:2022-05-10 格式:DOC 页数:8 大小:134.50KB
返回 下载 相关 举报
高一数学反函数教案(共8页).doc_第1页
第1页 / 共8页
高一数学反函数教案(共8页).doc_第2页
第2页 / 共8页
点击查看更多>>
资源描述

《高一数学反函数教案(共8页).doc》由会员分享,可在线阅读,更多相关《高一数学反函数教案(共8页).doc(8页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。

1、精选优质文档-倾情为你奉上一. 教学内容:反函数二. 本周重难点:1. 重点: 反函数的概念,互为反函数的函数图象间的关系。2. 难点:求反函数的方法,解决有关反函数的问题。【典型例题】例1 求下列函数的反函数。(1)()(2)()(3)()(4)()解:(1)由得 又时,即原函数的值域(2)()由得 又 在上是增函数 值域为 所求反函数()(3)由得 又 时,为减函数 值域为 所求反函数为()(4)由,有 又 时,为减函数 值域为例2 已知和互为反函数,求m,n的值。解:由 得 的反函数是() 与表示同一函数 例3 已知:,求的表达式。解:()例4 ,求的值。 解:方法一:由得 方法二: 例

2、5 若点(1,2)既在的图象上,又在其反函数的图象上,求、的值。解: 点(1,2)(2,1)都在的图象上 例6 已知函数的图象关于直线对称,求实数m的值。解: 函数的图象关于直线对称 它的反函数是它本身在中,令得,于是点(5,0)在函数的图象上,所以点(5,0)关于直线的对称点(0,5)也在函数的图象上。将,代入得例7 设,的图象与的图象关于直线对称,求的值。解: 将、互换应该就是即 例8 已知的反函数的图象的对称中心是(,3),求的值。解: 的对称中心为(,3) 图象的对称中心为(3,)又 即【模拟试题】(答题时间:30分钟)一. 选择题:1. 函数的反函数是( )A. B. C. D. 2

3、. 已知函数,函数的图象与函数的图象关于直线对称,则等于( ) A. B. C. D. 3. 已知(a、b、c是常数)的反函数,那么( )A. ,B. ,C. ,D. ,4. 函数的反函数为,则的反函数是( )A. B. C. D. 二. 填空题:1. 已知函数有反函数,则 2. 点P在的图象上,又在其反函数的图象上,则P点的坐标为 3. 直线与直线关于直线对称,则 , 4. 若,则 三. 解答题:1. 求下列函数的反函数。 (1) (2)2. 已知函数(1)求函数的反函数的值域(2)若(2,3)是反函数图象上的一点,求函数的值域3. 若函数在其定义域上是单调递增函数,求证它的反函数也是增函数。试题答案一. 1. D 2. B 3. A 4. C二.1. m 2.(2,2) 3. ;6 4. 三.1.(1) (2)()2. 解:(1)由函数得的定义域为 它的反函数的值域为(2)若(2,3)是反函数图象上的一点,则(3,2)在原来的函数的图象上,于是,即,所以, 反函数的定义域为 原函数的值域为3. 解:在的定义域内任取、,且需证为此令,于是有, 而在其定义域上是单调函数 即 也是增函数专心-专注-专业

展开阅读全文
相关资源
相关搜索

当前位置:首页 > 教育专区 > 教案示例

本站为文档C TO C交易模式,本站只提供存储空间、用户上传的文档直接被用户下载,本站只是中间服务平台,本站所有文档下载所得的收益归上传人(含作者)所有。本站仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。若文档所含内容侵犯了您的版权或隐私,请立即通知淘文阁网,我们立即给予删除!客服QQ:136780468 微信:18945177775 电话:18904686070

工信部备案号:黑ICP备15003705号© 2020-2023 www.taowenge.com 淘文阁