《初二数学一元一次函数(共9页).doc》由会员分享,可在线阅读,更多相关《初二数学一元一次函数(共9页).doc(9页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。
1、精选优质文档-倾情为你奉上初二数学 一元一次函数 基本概念1、变量:在一个变化过程中可以取不同数值的量。常量:在一个变化过程中只能取同一数值的量。例题:在匀速运动公式中,表示速度,表示时间,表示在时间内所走的路程,则变量是_,常量是_。在圆的周长公式C=2r中,变量是_,常量是_.2、函数:一般的,在一个变化过程中,如果有两个变量x和y,并且对于x的每一个确定的值,y都有唯一确定的值与其对应,那么我们就把x称为自变量,把y称为因变量,y是x的函数。 *判断Y是否为X的函数,只要看X取值确定的时候,Y是否有唯一确定的值与之对应例题:下列函数(1)y=x (2)y=2x-1 (3)y= (4)y=
2、2-1-3x (5)y=x2-1中,是一次函数的有( )(A)4个 (B)3个 (C)2个 (D)1个3、定义域:一般的,一个函数的自变量允许取值的范围,叫做这个函数的定义域。4、确定函数定义域的方法: (1)关系式为整式时,函数定义域为全体实数;(2)关系式含有分式时,分式的分母不等于零; (3)关系式含有二次根式时,被开放方数大于等于零;(4)关系式中含有指数为零的式子时,底数不等于零; (5)实际问题中,函数定义域还要和实际情况相符合,使之有意义。例题:下列函数中,自变量x的取值范围是x2的是( )Ay= By= Cy= Dy=函数中自变量x的取值范围是_.已知函数,当时,y的取值范围是
3、 ( )A. B. C. D.5、函数的图像一般来说,对于一个函数,如果把自变量与函数的每对对应值分别作为点的横、纵坐标,那么坐标平面内由这些点组成的图形,就是这个函数的图象6、函数解析式:用含有表示自变量的字母的代数式表示因变量的式子叫做解析式。7、描点法画函数图形的一般步骤第一步:列表(表中给出一些自变量的值及其对应的函数值);第二步:描点(在直角坐标系中,以自变量的值为横坐标,相应的函数值为纵坐标,描出表格中数值对应的各点);第三步:连线(按照横坐标由小到大的顺序把所描出的各点用平滑曲线连接起来)。8、函数的表示方法列表法:一目了然,使用起来方便,但列出的对应值是有限的,不易看出自变量与
4、函数之间的对应规律。解析式法:简单明了,能够准确地反映整个变化过程中自变量与函数之间的相依关系,但有些实际问题中的函数关系,不能用解析式表示。图象法:形象直观,但只能近似地表达两个变量之间的函数关系。9、正比例函数及性质一般地,形如y=kx(k是常数,k0)的函数叫做正比例函数,其中k叫做比例系数.注:正比例函数一般形式 y=kx (k不为零) k不为零 x指数为1 b取零当k0时,直线y=kx经过三、一象限,从左向右上升,即随x的增大y也增大;当k0时,图像经过一、三象限;k0,y随x的增大而增大;k0时,向上平移;当b0,图象经过第一、三象限;k0,图象经过第一、二象限;b0,y随x的增大
5、而增大;k0时,将直线y=kx的图象向上平移b个单位;当b0b0经过第一、二、三象限经过第一、三、四象限经过第一、三象限图象从左到右上升,y随x的增大而增大k0时,向上平移;当b0或ax+b Bm= Cm3 B0k3 C0k3 D0k”、“”或“”)17已知直线y=x-3与y=2x+2的交点为(-5,-8),则方程组的解是_18已知一次函数y=-3x+1的图象经过点(a,1)和点(-2,b),则a=_,b=_19如果直线y=-2x+k与两坐标轴所围成的三角形面积是9,则k的值为_20如图,一次函数y=kx+b的图象经过A、B两点,与x轴交于点C,则此一次函数的解析式为_,AOC的面积为_三、解
6、答题(共60分)21(14分)根据下列条件,确定函数关系式: (1)y与x成正比,且当x=9时,y=16;(2)y=kx+b的图象经过点(3,2)和点(-2,1)22(12分)一次函数y=kx+b的图象如图所示:(1)求出该一次函数的表达式;(2)当x=10时,y的值是多少?(3)当y=12时,x的值是多少?23(12分)一农民带了若干千克自产的土豆进城出售,为了方便,他带了一些零钱备用,按市场价售出一些后,又降价出售售出土豆千克数与他手中持有的钱数(含备用零钱)的关系如图所示,结合图象回答下列问题: (1)农民自带的零钱是多少? (2)降价前他每千克土豆出售的价格是多少?(3)降价后他按每千
7、克0.4元将剩余土豆售完,这时他手中的钱(含备用零钱)是26元,问他一共带了多少千克土豆?24(10分)如图所示的折线ABC表示从甲地向乙地打长途电话所需的电话费y(元)与通话时间t(分钟)之间的函数关系的图象(1)写出y与t之间的函数关系式(2)通话2分钟应付通话费多少元?通话7分钟呢?25(12分)已知雅美服装厂现有A种布料70米,B种布料52米,现计划用这两种布料生产M、N两种型号的时装共80套已知做一套M型号的时装需用A种布料1.1米,B种布料0.4米,可获利50元;做一套N型号的时装需用A种布料0.6米,B种布料0.9米,可获利45元设生产M型号的时装套数为x,用这批布料生产两种型号
8、的时装所获得的总利润为y元 求y(元)与x(套)的函数关系式,并求出自变量的取值范围; 当M型号的时装为多少套时,能使该厂所获利润最大?最大利润是多?参考答案:1D 2D 3B 4C 5D 6A 7C 8B 9C 10A112;y=2x 12y=3x 13y=2x+1 142 151616; 17 180;7 196 20y=x+2;421y=x;y=x+ 22y=x-2;y=8;x=14235元;0.5元;45千克24当03时,y=t-0.6 2.4元;6.4元25y=50x+45(80-x)=5x+3600两种型号的时装共用A种布料1.1x+0.6(80-x)米,共用B种布料0.4x+0.9(80-x)米, 解之得40x44,而x为整数,x=40,41,42,43,44,y与x的函数关系式是y=5x+3600(x=40,41,42,43,44);y随x的增大而增大,当x=44时,y最大=3820,即生产M型号的时装44套时,该厂所获利润最大,最大利润是3820元专心-专注-专业