三升四年级奥数讲义(共72页).doc

上传人:飞****2 文档编号:14942851 上传时间:2022-05-09 格式:DOC 页数:72 大小:2.27MB
返回 下载 相关 举报
三升四年级奥数讲义(共72页).doc_第1页
第1页 / 共72页
三升四年级奥数讲义(共72页).doc_第2页
第2页 / 共72页
点击查看更多>>
资源描述

《三升四年级奥数讲义(共72页).doc》由会员分享,可在线阅读,更多相关《三升四年级奥数讲义(共72页).doc(72页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。

1、精选优质文档-倾情为你奉上目 录第一讲 速算与巧算 . 2第二讲 应用题综合(一) .9第三讲 应用题综合(二).14第四讲 行程问题初步 .18第五讲 奇数与偶数 .23第六讲 计数问题 .28第七讲 体育比赛中的数学 .33第八讲 期中测试 .37第九讲 余数与周期 .40第十讲 简单的抽屉原理 .45第十一讲 巧求周长 .50第十二讲 数字谜 .55第十三讲 趣题巧解 .60第十四讲 逻辑推理 .64第十五讲 期末测试 .68第一讲 速算与巧算亲爱的同学们,你想一见到算式就能张口说出得数吗?你想让自己变得更聪明吗?学了今天的速算技巧后你就可以梦想成真了!还等什么?来吧,一起出发!你还记得

2、吗?1. 加法交换律:两个数相加,交换加数的位置,它们的和不变.2. 加法结合律:三个数相加,先把前两个数相加,再加上第三个数;或者,先把后两个数相加,再与第一个数相加,它们的和不变.3. 乘法交换律:两个数相乘,交换两个数的位置,其积不变, 即ab=ba,其中a,b为任意数.4. 乘法结合律:三个数相乘,可以先把前两个数相乘后,再与后一个数相乘,或先把后两个数相乘后,再与前一个数相乘,积不变,即abc=(ab)c=a(bc).习 能凑整的数,一般找能凑整的数看个位就可以了。【例1】 计算:378+26+609分析:原式=(378+22)+(600+9)+(26-22)=400+600+9+4

3、=1013.拓展 计算:1998+198+18分析:原式=(2000-2)+(200-2)+(20-2) =2220-6 =2214.【例2】 计算:1000-90-80-20-10分析:原式 =1000-(90802010)=1000-200=800.【例3】 计算:1)6311 ; 2) 85211分析:在这个数的首尾之间添上相邻两数依次相加的和(和满10要进1). 即“两边一拉,中间相加”.1)6311=693 (其中9是6+3),2)85211=9372(7=5+2 3=5+8末尾 9=8+1).【例4】 计算 :1515 ;2525 ;3535分析:建议教师先介绍个位数字为5的数的平

4、方速算规律:首数加1的和乘以首数,尾数相乘,两积连起来即为所求的积.1515=225 ;2525=625 ;3535=1225.暑假精讲1. 商不变性质:被除数和除数乘(或除)以同一个非零数,其商不变.在连除时,可以交换除数的位置,商不变,即abc=acb2. 乘除法混合运算的性质(1)在乘除混合运算中,被乘数、乘数或除数可以连同数字前面的运算符号一起交换位置,例如abc=acb=bca(2)在乘除混合运算中,去掉括号的规则以及去括号的情形 a(bc)=abc a(bc)=abc a(bc)=abc(3)两个数之积除以两个数之积,可以分别相除后再相乘,即 (ab)(cd)=(ac)(bd)=(

5、ad)(bc).在乘除运算中,要做到既正确又迅速,首先要熟练地掌握乘除的各种运算定律,性质和运算中积商的变化规律,其次要了解题目的特点,创造条件,选用合理,灵活的计算方法,下面我们通过一些例题介绍一些运算的速算和巧算的方法.【例1】 计算:25912548分析:解题关键是观察题目可以发现254得100,1258得1000,将它们分别合并便可达到速算原式=(254)(1258)9=10010009=. 【例2】 计算:456212525548分析:原式=456(25)(254)(1258)=456101001000=.巩固 计算:192564125分析:原式=(254)(1258)(192) =

6、 100100038 =.【例3】 计算:5400254分析:根据除法性质知一个数分别除以两个数,等于除以这两个数的积.原式=5400(254)=5400100=54.【例4】 计算:5(711) (1115) (1521) 分析:原式=571111151521=5(1111)(1515)(217)=53=15.【例5】 计算:373-3625125+12550分析:运用abc=a(bc) .原式=(373)-29+6250=111+(6250-29)=3003+6221=9224.【例6】 5346+7154+8254分析:可以把53,199拆分.原式=(54-1)46+7154+8254=

7、5446+7154+8254-46=54(46+71+82)-46=54199-46=54(200-1)-46=54200=54-46=10800-100=10700.【例7】 (873477-198)(476874+199)分析:观察到873与874,476与477的关系,可以考虑把整数进行拆分.原式=873(476+1)-198 476(873+1)+199=873476+873-198 476873+476+199=873476+675 476873+675=1.【例8】 分析:原式=(-1)=-=.【例9】 9999926+3333324分析:原式=9999926+3333338=99

8、99926+999998=99999(26+8)=(-1)34=.【例10】 计算:1+122+l233+l2344+l23455分析:原式=1(2-1)+l2(3-1)+123(4-1)+1234(5-1)+l2345(6-1)=l2-1+l23-12+l234-123+l2345-1234+l23456-l2345=l23456-l=720-l=719【例11】 计算:2006+2005-2004-2003+2002+2001-2000-1999+1998+5-4-3+2+1分析:(法1)我们观察可以发现,题目中每4个数一组可以相互抵消,将这些数先分组,简化计算.原式=2006+(2005

9、-2004-2003+2002)+(2001-2000-1999+1998)+(5-4-3+2)+1=2006+0+0+0+1=2007.(法2)根据符号规律,可以4个数一组.原式=(2006+2005-2004-2003)+(6+5-4-3)+2+1=4(20044)+3=2007.拓展 计算:1992-1-2+3+4-5-6+7+8-1989-1990+1991分析:原式=(1992+1991-1990-1989)+(4+3-2-1) =4(19924) =1992.【例12】 计算:917+9117-517+4517分析:前铺分配律的逆运算是个难点,建议教师先从简单题讲清楚再讲本题.计算

10、1: 3619+6419=(36+64)19=1900.计算2: 3619+64144=3619+64(19+125)=(36+64)19+64125=1900+88125=1900+8000=9900.例题原式=917-517+9117+4517=(9-5)17+(91+45)17=417+13617=68+8=76.【例13】 计算:76521327+76532727分析:原式=765(213+327)27=76554027=76520=15300.【例14】 计算:252626-262525分析:前铺建议教师先给学生讲清楚周期性数字的规律.如=1231001,=123,原式=252610

11、1-2625101 =0.拓展1 计算:分析:原式 =12(3)=(123)()=41=4.拓展2 计算:(4545+5353)4949分析:原式=(45101+53101)(49101) =(45+53)10149101 =(45+53)49 =2.【例15】 20043-20034分析:原式=20042003-20032004=0.附加内容【附1】 计算:(11109321)(22242527)分析:原式= (11222)(10525)(9627)(8324)74 =122174=112.【附2】 计算:(+)7分析:前铺建议教师先讲解拆数法:=1+210000+31000+4100+51

12、0+61,=2+310000+41000+5100+610+11,或者观察竖式发现:每个数位上的和=(1+2+3+4+5+6)相应的数量单位.讲清楚拆数这个问题,题目就迎刃而解了.原式=(1+2+3+4+5+6)(+10000+1000+100+10+1) 7=217=3=.大显身手1. 251732125分析:原式=(254)17(8125)= .2. 1)5799 ;2) 17999分析:1)原式= 5643 ;2)原式=16983.3. 56000(1400016)分析:原式= 64.4. 1500012515分析:原式=1500015125=1000125=8.数学迷宫仔细看看图中有几

13、只猴子?第二讲 应用题综合(一)春季班同学们已经学习了平均数的应用题,其中包括以两组数的平均数和它们的总平均数间的关系为内容的问题求解时应恰当选取基准数并注意权重暑假我们学习的平均数问题包括算术平均数、加权平均数、连续数和求平均数、调和平均数和基准数求平均数.解答这类应用题时,主要是弄清楚总数、份数、一份数三量之间的关系,根据总数除以它相对应的份数,求出一份数,即平均数.首先,让我们先回顾一下吧!你还记得吗?1. 小强做跳绳练习,第一次跳了67下,第二次跳了76下她要想三次平均成绩达到80下,第三次至少要跳多少下?分析:803(6776)97(下).2. 小明家先后买了两批小猪,养到今年10月

14、.第一批的3头每头重66千克,第二批的5头每头重42千克.小明家养的猪平均多重?分析:两批猪的总重量为663425408(千克).两批猪的头数为358(头),故平均每头猪重408851(千克).3. 甲乙两地相距240千米,一辆汽车从甲地往乙地送货,去时以每小时40千米的速度行驶.返回时由于空载,以每小时60千米的速度行驶.这辆汽车往返的平均速度是每小时多少千米?分析:2402=480(千米),24040=6(小时),24060=4(小时),6+4=10(小时),48010=48(千米).4. 小强为了培养自己的数学解题能力,除了认真读一些书外,还规定自己每周(一周为7天)平均每天做4道数学竞

15、赛训练题.星期一至星期三每天做3道,星期四不做,星期五、六两天共做了13道.那么,星期日要做几道题才能达到自己规定的要求?分析:要先求出每周规定做的题目总数,然后求出星期一至星期六已做的题目数.两者相减就是星期日要完成的题目数.每周要完成的题目总数是47=28(道)星期一至星期六已做题目331322(道),所以,星期日要完成28-226(道).综合列式为47-(3313)6(道).暑假精讲【例1】 五个同学期末考试的数学成绩平均94分,而其中有三个同学的平均成绩为92分,另两个同学的平均成绩是多少?分析:(945-923)2=97(分).【例2】 一个房间里有9个人,平均年龄是25岁;另一个房

16、间里有11个人,平均年龄是45岁两个房间的人合在一起,他们的平均年龄是几岁?分析:(259+4511)(9+11)=36(岁).【例3】 学而思三升四竞赛班50人考试,全班平均分为85分,其中有40的人及格,及格人的平均分是93分,那么不及格人的平均分是多少分? 分析:不及格人的平均分是(8550-9340)(50-40)=53(分).【例4】 甲班51人,乙班49人,某次考试2个班全体同学的平均成绩是81分,乙班平均分比甲班高7分,那么乙班的平均成绩是多少分?分析:甲、乙2班总分为81(51+49)=8100(分),由于乙班平均分比甲班高7 分,如果甲班每人提高7分,那么2班平均分即为乙班现

17、在的平均分(8100+751)(51+49)=84.57(分).下面我们要学习一类新的应用题盈亏问题. 盈亏问题就是把一定数量的物品分给若干对象,由两种分配方案产生不同的盈亏数,反过来求被分配的物品数与分配的对象数.解题的关键在于确定两次分配数之差与盈亏总额(盈数+亏数),由此得到求解盈亏问题的公式:分配总人数=盈亏总额两次分配数之差.需要注意的是,两种分配方案的结果会出现一盈一亏、两盈、两亏等情况,所以我们要灵活把握.【例5】 六一儿童节到了,李老师给同学们准备了一些漂亮的贴画作礼物,如果每人分3张就会多出29张,如果每人分5张则少19张,那么李老师给几个学生发礼物呢? 分析:学生的人数:(

18、29+19)(5-3)=24(个).【例6】 杨老师到新华书店去买书,若买5本则多3元;若买7本则少1.8元这本书的单价是多少?顾老师共带了多少元钱?分析;买5本多3元,买7本少1.8元.盈亏总额为31.8=4.8(元),这4.8元刚好可以买7-52(本)书,因此每本书4.82=2.4(元),顾老师共带钱2.45315(元).【例7】 学校组织四年级师生去参观清华、北大,原计划租用45个座位的客车,但这样有5人没座,如果租用同样数量的55个座位的客车,则正好多出1辆车.那么,原计划租用45座客车几辆?分析:租55个座位的客车,正好多出1辆车,也就是少了一车的人,即55人,所以,原计划租用的客车

19、数量(55+5)(55-45)=6(辆).【例8】 用绳子量一口井的深度,把绳子折两折来量,多50厘米;折三折来量,还差30厘米,求绳长和井深各是多少? 分析:根据题意,(502+303)(3-2)=190(厘米).(190+50)2=480(厘米)或(190-30)30=480(厘米).【例9】 海尔兄弟约好在动物园门口见面,弟弟从家去动物园,如果每分钟走30米,就要迟到5分钟,如果每分钟走40米,可以提前2分钟到动物园,那么,海尔兄弟家到动物园的距离是几米?分析:迟到5分钟相当于少走了:305=150(米),提前2分钟到相当于多走了:40 2=80(米),所以,如果不迟到也不早到,弟弟走的

20、时间为:(150+80)(40-30)= 23(分钟),家到学校的距离为:30(23+5)=840(米).【例10】 百货商店委托搬运站运送100只花瓶双方商定每只运费1元,但如果发生损坏,那么每打破一只不仅不给运费,而且还要赔偿1元,结果搬运站共得运费92元问:搬运过程中共打破了几只花瓶?分析:假设100只花瓶在搬运过程中一只也没有打破,那么应得运费1100=100(元)实际上只得到92元,少得100-92=8(元)搬运站每打破一只花瓶要损失1+1=2(元)因此共打破花瓶82=4(只)附加内容【附1】 100名学生参加数学竞赛,平均分数是63分,其中参赛男同学平均分为60分,女同学平均分为7

21、0分,那么该校参赛男同学比女同学多几人?分析:参赛女同学人数为:100(63-60) (70-60)=30(人)所以参赛男同学比女同学多100-30-30=40(人)【附2】 学而思竞赛班举行歌唱比赛,五位评委打分计分时,先去掉一个最高分和一个最低分,在算出平均分作为该选手的最后得分下面是嘟嘟同学的得分:79,83,86,81,(第五个分数被盖上了),最后得分82请你算算第五位评委打多少分? 分析:如果第五位评委的分数是最高分获最低分,那么另一个去掉的分数就是79或86,剩下的3个分数的平均分不等于82,不合题意.所以第五位评委的分数是没有被去掉的,去掉的是79和86,第五位评委的分数是823

22、-(83+81)=82(分).【附3】 早晨陈奶奶去超市买菜,如果她买6千克鱼肉则还差10元如果买8千克猪肉则还剩2元已知每千克鱼肉比猪肉贵5元那么陈奶奶带了多少钱?分析:由于每千克鱼肉比猪肉贵5元,6千克鱼肉应该比6千克猪肉贵:65=30(元),这时,买6千克猪肉应该剩下:3010=20(元),所以,每千克猪肉的价钱为:(202)(86)=9(元),陈奶奶所带钱数:89+2=74(元).【附4】 乐乐从家去学校上学,每分钟走50米,走了2分钟后,发觉按这样的速度走下去,到学校就会迟到8分钟于是乐乐开始加快速度,每分钟比原来多走10米,结果到达学校时离上课还有5分钟问:乐乐家离学校有多远? 分

23、析:乐乐从改变速度的那一点到学校,若每分钟走50米,则要迟到8分钟,也就是到上课时间时,他离学校还有508=400(米);若每分钟多走10米,即每分钟走60米,则到达学校时离上课还有5分钟,如果一直走到上课时间,那么他将多走(50+10)5=300(米)所以盈亏总额,即总的路程相差400+300=700(米)两种走法每分钟相差10米,因此所用时间为700-10=70(分),也就是说,从乐乐改变速度起到上课时间有70分钟所以乐乐家到学校的距离为50(2+70+8)=4000(米)【附5】 四(2)班在这次的班级评比中,获得了“全优班”的称号为了奖励同学们,班主任刘老师买了一些铅笔和橡皮刘老师把这

24、些铅笔和橡皮分成一小堆一小堆,以便分给几位优秀学生如果每堆有1块橡皮2支铅笔,铅笔分完时橡皮还剩5块;如果每堆有3块橡皮和5支铅笔,橡皮分完时还剩5支铅笔那么,刘老师一共买了多少块橡皮?多少支铅笔? 分析:如果增加10支铅笔,则按1块橡皮、2支铅笔正好分完;而按3块橡皮、5支铅笔分,则剩下10+5=15(支)铅笔,但如果按3块橡皮、6支铅笔分,则正好分完,可以分成:15(65)=15(堆),所以,橡皮数为:153=45(块),铅笔数为:15610=80(支)大显身手1. 暑假期间,小强每天都坚持游泳,并对所游的距离作了记录如果他在暑假的最后一天游670米,则平均每天游495米;如果最后一天游7

25、78米,则平均每天游498米;如果他想平均每天游500米,那么最后一天应游多少米?分析:(778-670)(498-495)=1083=36(天),说明小强一共游了36天.要想平均游500米的话,他最后一天应该游670+36(500-495)=670+180=850米.2. 甲、乙两地相距240千米,一辆汽车从甲地往乙地送货,去时以每小时40千米的速度行驶.返回时由于空载,以每小时60千米的速度行驶.这辆汽车往返的平均速度是每小时多少千米?分析:2402=480(千米),24040=6(小时),24060=4(小时),6+4=10(小时),48010=48(千米).3. 王老师带班里的学生去颐

26、和园春游,他们租了一些船在昆明湖上划船,如果增加1条船,正好每条船坐4人,如果减少1条船,正好每条船坐6人,那么,他们总共有几人去了颐和园?分析:这道题也可以理解为:原来每条船坐4人正好,后来减少了2条船,每条船坐6人所以,租的船的数量为:6(1+1)(64)=6(条),去颐和园的总人数为:64=24(人).4. 兰兰参加暑假的英语夏令营,老师为她们安排住宿,如果每个房间住5人,则多出18人,如果每个房间住7人,则有2个房间空着.那么,参加英语夏令营的同学有几人?分析:房间数量:(18+72)(75)=16(个),参加夏令营的人数:165+18=98(人).成长故事永远看得起自己有一天某个农夫

27、的一头驴子,不小心掉进一口枯井里,农夫绞尽脑汁想办法救出驴子,但几个小时过去了,驴子还在井里痛苦地哀嚎着 最后,这位农夫决定放弃,他想这头驴子年纪大了,不值得大费周章去把它救出来,不过无论如何,这口井还是得填起来于是农夫便请来左邻右舍帮忙一起将井中的驴子埋了,以免除它的痛苦 农夫的邻居们人手一把铲子,开始将泥土铲进枯井中当这头驴子了解到自己的处境时,刚开始哭得很凄惨但出人意料的是,一会儿之后这头驴子就安静下来了农夫好奇地探头往井底一看,出现在眼前的景象令他大吃一惊:当铲进井里的泥土落在驴子的背部时,驴子的反应令人称奇它将泥土抖落在一旁,然后站到铲进的泥土堆上面! 就这样,驴子将大家铲倒在它身上

28、的泥土全数抖落在井底,然后再站上去很快地,这只驴子便得意地上升到井口,然后在众人惊讶的表情中快步地跑开了!第三讲 应用题综合(二)年龄问题和还原问题春季班都学习过基础的知识:年龄问题的解题要点是分析题意从表示年龄间倍数关系的条件入手理解数量关系.关键抓住“年龄差”不变.应用“差倍”、“和倍”或“和差”问题数量关系式解决;还原问题我们学习了用倒推法解单、多个变量的还原问题.今天我们再提高和拓展一下.来吧,我们出发!你还记得吗?1. 今年姐姐13岁,弟弟今年10岁,当姐弟年龄之和达101岁时,姐弟各是多少岁?分析: 法1:两人年龄和每年增加2岁算出过多少年两人年龄和达101岁,就可在现在的年龄上各

29、人增加同样多的岁数101(1310)=10123=78(岁),782 39(年),姐:133952(岁) ,弟:103949(岁) 法2:可以把本题理解为一道“和差问题”,由已知姐姐和弟弟今年分别是13岁和10岁,可求出两人今年的年龄差是:13-10=3(岁)当两人的年龄和是101岁时,两人的年龄差还是3岁所以,姐姐的年龄为(101+3)2=52(岁),弟弟的年龄为52-3=49(岁)2. 今年爸爸48岁,儿子20岁,几年前爸爸的年龄是儿子的5倍?分析:今年爸爸与儿子的年龄差为“4820=28”岁,因为二人的年龄差不随时间的变化而改变,所以当爸爸的年龄为儿子的5倍时,两人的年龄差还是这个数,这

30、样就可以用“差倍问题”的解法当爸爸的年龄是儿子年龄的5倍时,他们的年龄差是儿子年龄的4倍,所以儿子的年龄是:(4820)(51)7(岁),由20713(岁),推知13年前爸爸的年龄是儿子年龄的5倍3. 小新在做一道加法题,由于粗心,将个位上的5看作9,把十位上的8看作3,结果所得的和是123正确的答案是多少? 分析:(倒推法)把个位上的5看作9,相当于把正确的和多算了4,求正确的和,应把4减去;把十位上的8看作3,相当于把正确的和少算了50,求正确的和,应把50加上去所以正确的和是123+50- 4=169即:123+(80-30)- (9-5)=169.4. 一群蚂蚁搬家,原存一堆食物第一天

31、运出总数的一半少12克第二天运出剩下的一半少12克,结果窝里还剩下43克问蚂蚁家原有食物多少克?分析:(倒推法)教师可画线段图帮助学生理解如果第二天再多运出12克,就是剩下的一半,所以第一天运出后,剩下的一半重量是43-12=3l(克);这样,第一天运出后剩下的重312=62(克)那么,一半的重量是6212=50(克),原有食物502=100(克) 即 (43-12)2-122=100(克).暑假精讲【例1】 父亲15年前的年龄相当于儿子12年后的年龄当父亲的年龄是儿子的4倍时,父亲多少岁?分析:父亲比儿子大15+12=27岁儿子是27(41)=9岁父亲是94=36岁【例2】 小明一家有4人:

32、爷爷、爸爸、妈妈和小明爷爷比爸爸大26岁,妈妈比小明也大26岁已知这家人今年的年龄之和为126岁,而5年前的年龄之和为107岁,那么小明与他爷爷的年龄之差是几岁?分析:5年来,小明家的年龄之和增加了126-107=19岁这家现有4口人,而1945,这说明小明还不满5岁,他今年只有19-35=4岁于是今年妈妈4+26=30岁,爷爷和爸爸的年龄之和为126-4-30=92岁又爷爷比爸爸大26岁,因此今年爷爷(92+26)2=59岁,他比小明大59-4=55岁【例3】 6年前,母亲的年龄是儿子的5倍.6年后母子年龄和是78岁.问:母亲今年多少岁?分析: 母子今年年龄和: 78-6 2=66(岁),母

33、子6年前年龄和: 66-62=54(岁),母亲6年前的年龄:54(5+1)5=45(岁),母亲今年的年龄:45+6=51(岁)【例4】 王老师与王平和李刚两位同学的平均年龄是20岁,李老师与王平和李刚两位同学的平均年龄是18岁王老师今年32岁,李老师今年多少岁?分析:王老师比李老师大203183=6(岁)故李老师今年的年龄为326=26(岁)【例5】 林林1999年上四年级,他出生年份的各位数字之和是最大的一位数的3倍,问他1999年几岁?分析:他出生于1989年,1999年时他10岁.【例6】 新天地广场运进一批新款式彩色电视机,第一天售出总数的一半多10台,第二天售出剩下的一半多20台,还

34、剩95台这批新款彩电有多少台?分析:根据题意可画出线段示意图进行倒推还原由示意图可知:95台加上20台正好是剩下的一半,所以用(95+20)2=剩下的台数;剩下的台数加上10台,正好是总数的一半,于是可求出这批彩电的台数(95+20)2+102=480(台). 【例7】 村姑卖蛋,第一次卖出一篮的一半又二个;第二次卖出余下的一半又二个;第三次卖出再剩下的一半又二个,这时篮里只剩下二十个蛋这篮鸡蛋有多少个?从上面线段图可以看出:最后剩下20个再加上第三次卖出的再余下的一半以外的2个,就是再余下的一半,由此可求出再余下的是:(20+2)2=44(个)44个再加上第二次卖出余下的一半以外的2个就是余

35、下的一半,因此可求出余下的是:(44+2)2=92(个)92个再加上第一次卖出一篮的一半以外的2个就是全篮的一半,因此可求出全篮鸡蛋的个数是(92+2)2=188(个)【例8】 A,B,C三位小朋友都有若干本图书,如果A将自己的书给B,C,使B,C的书各增加一倍然后B又将现有的图书给A,C,使A,C现有的图书各增加一倍;最后C再将自己已有的图书给A,B,使A,B的图书各增加一倍,这时三人的图书都是240本A,B,C三位小朋友原来各有图书多少本?ABC第一次390210120第二次60420240第三次120120480240240240分析:如图:【例9】 三人存款不等,只知如果甲给乙40元,

36、乙又给丙30元,丙再给甲20元,给乙70元,这时三人都有240元三人原来各有存款多少元?分析:甲原有:240-20+40=260(元);乙原有:240-70+30-40=160(元);丙原有:240+20+70-30=300(元).附加内容【附1】 甲、乙、丙、丁四人现在的年龄和是64岁,甲21岁,乙17岁甲18岁时,丙的年龄是丁的3倍丁现在的年龄是多少岁?分析:(法1)当甲18岁时,乙的年龄为173=14(岁)丁现在的年龄为(641814)(1+3)=324=8(岁)(法2)甲18岁是3年前,所以4人总年龄是64-34=52(岁),所以丙丁年龄和为52-18-14=20(岁),丁就是20(1

37、+3)=5(岁),现在的年龄是5+3=8(岁).【附2】 竹篮内有若干李子,将它的一半又一个给小朋友甲,把剩下的一半又两个给小朋友乙,最后取剩余的一半又三个给小朋友丙,这时竹篮里的李子恰好发完问竹篮内原来有多少个李子?分析:(倒推法)“剩余的一半又三个恰好发完”说明剩余的一半刚好是3个,即第二次发完后还剩6个,“剩下的一半又两个”,则第一次发完后还剩(6+2)2=16(个),“将它的一半又一个”,则原来有(16+1)2=34(个).大显身手1. 小樱今年16岁,小桃今年11岁,几年后,小樱和小桃的年龄之和是45岁?分析:小樱和小桃今年年龄和为16+11=27(岁)小樱和小桃经过4527=18(

38、年) 两人的年龄之和是45岁时 这时,小樱和小红每人经过的年数都为:182=9(年) 2. 已知明明今年2岁,爸爸今年28岁,那么请问11年后爸爸的年龄是小明的年龄的多少倍?分析:(28+11)(2+11)=3913=3(倍)3. 小龟问老龟:“老爷爷,您今年多少岁?”老龟说:“把我的年龄加上20,再缩小2倍之后减去15,再扩大3倍,正好是105岁你能算出我今年多少岁吗?”分析:(法1)根据题意,从最后一个条件105岁开始倒推:最后的数扩大3倍是105岁,如果没扩大3倍,应该是1053=35(岁);这个35岁是减去15得到的,如果没减去15,应该是35+15=50(岁);这个50岁是缩小2倍后

39、得到的,如果没有缩小2倍,应该是502=100(岁);这个100岁是老龟的年龄加上20后得到的,那么老龟的年龄应该是80岁(法2)设老龟今年x岁依题意有(x+20)2153=105解得x=804. 小红、小华和小刚各有一些故事书,小红给小华3本,小华给小刚5本后,三个人的书的本数同样多.小华原来比小刚多多少本?分析:(倒推法)5+(5-3)= 7(本).成长故事老鹰和火鸡有一群火鸡看着老鹰张著翅膀自由自在地在天上翱翔,十分的羡慕于是和老鹰的头头商量是否能够派一个教练来教他们飞行的方法,老鹰头头爽快的答应下来 老鹰教练很有耐心地教导火鸡张开翅膀学飞行:翅膀张开,用力地拍!火鸡们在老鹰教练的大力指

40、导下拼命地张着翅膀、用力地拍,它们好高兴自己会飞了,虽然飞得不是很高,但是它们已经会飞了! 太阳西下,该是下课回家的时候了,老鹰教练对它们说:你们今天好棒!你们都飞得很好,你们可以飞了!太阳下山了,我也要回家了!结果呢?老鹰是飞着回家,火鸡仍然是走路回家第四讲 行程问题初步在春季班时我们已经学习了简单的行程问题相遇问题的基本类型(两人单次直线相遇),同学们,你们还记得做行程问题的基本工具是什么吗?没错,就是画“线段图”.今天我们将学习更加复杂的相遇问题.先来回顾一下相遇问题的基础知识吧! 你还记得吗?1. 团团和圆圆同时从甲、乙两个书店相对出发,团团每分钟走460米,圆圆每分钟走480米3分钟

41、后两人相遇甲、乙两个书店相隔是多少千米?分析:(法1)根据公式:总路程=速度和相遇时间,所以甲、乙两个书店的路程是(460+480)3=2820(米)(法2)如图,还可以先分别求两人各走了多少再相加,4603+4803=2820(千米)2. 胖胖和瘦瘦两家相距255千米,两人同时骑车从家出发相对而行,胖胖每小时行45千米,瘦瘦每小时行40千米两人相遇时,胖胖和瘦瘦各行了多少千米?分析:255(45+40)=3(小时)胖胖:453=135(千米),瘦瘦:403=120(千米)3. 孙悟空在花果山,猪八戒在高老庄,花果山和高老庄中间有条流沙河,一天,他们约好在流沙河见面,孙悟空的速度是200千米小时猪八戒的速度是150千米小时,他们同时出发2

展开阅读全文
相关资源
相关搜索

当前位置:首页 > 教育专区 > 教案示例

本站为文档C TO C交易模式,本站只提供存储空间、用户上传的文档直接被用户下载,本站只是中间服务平台,本站所有文档下载所得的收益归上传人(含作者)所有。本站仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。若文档所含内容侵犯了您的版权或隐私,请立即通知淘文阁网,我们立即给予删除!客服QQ:136780468 微信:18945177775 电话:18904686070

工信部备案号:黑ICP备15003705号© 2020-2023 www.taowenge.com 淘文阁