2022年直线的参数方程教案.pdf

上传人:H****o 文档编号:14818329 上传时间:2022-05-07 格式:PDF 页数:10 大小:118.50KB
返回 下载 相关 举报
2022年直线的参数方程教案.pdf_第1页
第1页 / 共10页
2022年直线的参数方程教案.pdf_第2页
第2页 / 共10页
点击查看更多>>
资源描述

《2022年直线的参数方程教案.pdf》由会员分享,可在线阅读,更多相关《2022年直线的参数方程教案.pdf(10页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。

1、直线的参数方程教学目标 :1. 联系数轴、向量等知识, 推导出直线的参数方程,并进行简单应用,体会直线参数方程在解决问题中的作用2. 通过直线参数方程的推导与应用,培养综合运用所学知识分析问题和解决问题的能力,进一步体会运动与变化、数形结合、转化、类比等数学思想3. 通过建立直线参数方程的过程,激发求知欲, 培养积极探索、 勇于钻研的科学精神、严谨的科学态度教学重点 :联系数轴、向量等知识,写出直线的参数方程教学难点 :通过向量法,建立参数t(数轴上的点坐标)与点在直角坐标系中的坐标, x y之间的联系教学方式 :启发、探究、交流与讨论. 教学手段 :多媒体课件教学过程 :一、回忆旧知,做好铺

2、垫教师提出问题:1. 曲线参数方程的概念及圆与椭圆的参数方程2. 直线的方向向量的概念3. 在平面直角坐标系中,确定一条直线的几何条件是什么?4. 已知一条直线的倾斜角和所过的一个定点,请写出直线的方程精品资料 - - - 欢迎下载 - - - - - - - - - - - 欢迎下载 名师归纳 - - - - - - - - - -第 1 页,共 10 页 - - - - - - - - - - 5. 如何建立直线的参数方程?这些问题先由学生思考,回答,教师补充完善,问题5 不急于让学生回答,先引起学生的思考【设计意图】 通过回忆所学知识,为学生推导直线的参数方程做好准备二、直线参数方程探究

3、1回顾数轴,引出向量数轴是怎样建立的?数轴上点的坐标的几何意义是什么?教师提问后,让学生思考并回答问题教师引导学生明确:如果数轴原点为O ,数 1 所对应的点为 A,数轴上点 M的坐标为 t ,那么: OAuu u r为数轴的单位方向向量,OAuuu r方向与数轴的正方向一致,且OMtOAuu uu ruu u r;当OMu uuu r与OAuu u r方向一致时(即OMu uu u r的方向与数轴正方向一致时) ,0t;当 OMu uuu r与 OAuu u r方向相反时(即 OMu uu u r的方向与数轴正方向相反时) ,0t;当 M与 O重合时,0t;|OMtuuuu r教师用几何画板

4、软件演示上述过程【设计意图】 回顾数轴概念,通过向量共线定理理解数轴上的数的几何意义,为选择参数做准备2. 类比分析,异曲同工问题: (1) 类比数轴概念,平面直角坐标系中的任意一条直线能否定义成数轴?(2)把直线当成数轴后,直线上任意一点就有两种坐标怎样选取单位长度和方向才有利于建立这两种坐标之间的关系?精品资料 - - - 欢迎下载 - - - - - - - - - - - 欢迎下载 名师归纳 - - - - - - - - - -第 2 页,共 10 页 - - - - - - - - - - 教师提出问题后,引导学生思考并得出以下结论:选取直线l 上的定点0M为原点,与直线 l 平行

5、且方向向上 ( l 的倾斜角不为 0 时) 或向右(l 的倾斜角为 0时)的单位向量 er确定直线 l 的正方向,同时在直线l 上确定进行度量的单位长度,这时直线 l 就变成了数轴于是,直线l 上的点就有了两种坐标(一维坐标和二维坐标)在规定数轴的单位长度和方向时,与平面直角坐标系的单位长度和方向保持一致,有利于建立两种坐标之间的联系【设计意图】 使学生明确平面直角坐标系中的任意直线都可以在规定了原点、单位长度、正方向后成为数轴,为建立直线参数方程作准备3. 选好参数,柳暗花明问题( 1) :当点 M在直线 l 上运动时,点 M满足怎样的几何条件?让学生充分思考后,教师引导学生得出结论:将直线

6、l 当成数轴后,直线l 上点 M运动就等价于向量0M Mu uu uu u r变化, 但无论向量怎样变化, 都有0M Mteuuuuu u rr 因此点 M在数轴上的坐标 t 决定了点 M的位置,从而可以选择 t 作为参数来获取直线 l 的参数方程【设计意图】 明确参数 问题( 2) :如何确定直线 l 的单位方向向量 er?教师启发学生:如果所有单位向量起点相同,那么终点的集合就是一个圆为了研究问题方便,可以把起点放在原点,这样所有单位向量的终点的集合就是一个单位圆因此在单位圆中来确定直线的单位方向向量教师引导学生确定单位方向向量,在此基础上启发学生得出(cos,sin)er,从而明确直线

7、l 的方向向量可以由倾斜角来确定当 0时, sin0,所以直线 l 的单位方向向量 er的方向总是向上【设计意图】 综合运用所学知识,获取直线的方向向量,培养学生探索精神,体会数形结合思想精品资料 - - - 欢迎下载 - - - - - - - - - - - 欢迎下载 名师归纳 - - - - - - - - - -第 3 页,共 10 页 - - - - - - - - - - 4. 等价转化,深入探究问题:如果点0M,M的坐标分别为00(,) ( , )xyx y、,怎样用参数 t表示,x y?教师启发学生回顾向量的坐标表示,待学生通过独立思考并写出参数方程后再全班交流过程如下:因为(

8、cos,sin)er, (0,)) ,00000( , )(,)(,)M Mx yxyxxyyu uu uu u r,0/M Meuuuuu u rr又,所以存在实数 tR,使得0M Mteuu uu u u rr,即00(,)(cos,sin)xxyyt于是0cosxxt,0sinyyt,即0cosxxt,0sinyyt因此,经过定点00(,)M xy,倾斜角为的直线的参数方程为sincos00tyytxx( t为参数) 教师提出如下问题让学生加强认识:直线的参数方程中哪些是变量?哪些是常量?参数 t的取值范围是什么?参数 t的几何意义是什么?总结如下:00,xy,是常量,,x y t 是变

9、量; tR;由于| 1er,且0M Mteuuuu u u rr,得到0M Mtu uuuu u r,因此 t 表示直线上的动点 M到定点0M的距离当0M Muuuu u u r的方向与数轴 (直线)正方向相同时,0t;当0M Muuuu u u r的方向与数轴(直线)正方向相反时,0t;当0t时,点 M与点0M重合精品资料 - - - 欢迎下载 - - - - - - - - - - - 欢迎下载 名师归纳 - - - - - - - - - -第 4 页,共 10 页 - - - - - - - - - - 【设计意图】 把向量转化为坐标,获得了直线的参数方程,在此基础上分析直线参数方程的

10、特点,体会参数的几何意义三、运用知识,培养能力例 1. 已知直线:10lxy与抛物线2yx交于 A,B 两点,求线段 AB的长度和点( 1,2)M到 A,B 两点的距离之积先由学生思考并动手解决,教师适时点拨、引导,鼓励一题多解,学生可能有以下解法:解法一:由210 xyyx,得210(*)xx设11(,)A x y,22(,)B xy, 由韦达定理得:121211xxxx,2212121()42510ABkxxx x由(*)解得12151522xx,12353522yy,所以15 3515 35(,)(,)2222AB,则222215351535( 1)(2)( 1)(2)2222MAMB3

11、53542解法二、因为直线 l 过定点 M ,且 l 的倾斜角为34,所以它的参数方程是31cos432sin4xtyt( t 为参数) ,即212222xtyt(t 为参数) 精品资料 - - - 欢迎下载 - - - - - - - - - - - 欢迎下载 名师归纳 - - - - - - - - - -第 5 页,共 10 页 - - - - - - - - - - 把它代入抛物线的方程,得2220tt,解得12102t,22102t由参数 t的几何意义得:1210ABtt,1 22MAMBt t在学生解决完后,教师投影展示学生的解答过程,予以纠正、完善然后进行比较:在解决直线上线段长

12、度问题时多了一种解决方法【设计意图】 通过本题训练,使学生进一步体会直线的参数方程,并能利用参数解决有关线段长度问题,培养学生从不同角度分析问题和解决问题能力以及动手能力探究:直线sincos00tyytxx( t为参数)与曲线( )yf x交于12,MM两点,对应的参数分别为12,t t(1)曲线的弦12M M的长是多少?(2)线段12M M的中点 M对应的参数 t 的值是多少?先由学生思考,讨论,最后师生共同得到:12121M Mtt(),1222ttt( )【设计意图】 通过特殊到一般,及时让学生总结有关结论,为进一步应用打下基础,培养归纳、概括能力例 2、经过点(2,1)M作直线 l

13、,交椭圆221164xy于 A,B 两点如果点 M恰好为精品资料 - - - 欢迎下载 - - - - - - - - - - - 欢迎下载 名师归纳 - - - - - - - - - -第 6 页,共 10 页 - - - - - - - - - - 线段 AB的中点,求直线 l 的方程分析:引导学生以M 作为直线 l 上的定点写出直线的参数方程,然后与椭圆的方程联立, 设 A,B 两点对应的参数分别为12,t t,则由120tt求出直线 l 的斜率教师板书,过程如下:解:设过点(2,1)M的直线 l 的参数方程为2cos1sinxtyt(t 为参数) ,代入椭圆方程,整理得22(3sin

14、1)4(cos2sin)80t因为点 M在椭圆内,这个方程必有两个实根, 设 A,B 两点对应的参数分别为12,t t,则1224(cos2sin)3sin1tt因为点 M为线段 AB的中点,所以1202tt,即 cos2sin0 于是直线 l 的斜率1tan2k因此,直线 l 的方程是11(2)2yx,即240 xy教师引导学生课下用其他方法解决思考:例 2 的解法对一般圆锥曲线适用吗?把“中点”改为“三等分点”,直线l 的方程怎样求?由学生课下解决【设计意图】 体会直线参数方程在解决弦中点问题时的作用四、自主解决,深入理解已知过点(2,0)P,斜率为43的直线和抛物线22yx相交于 A,B

15、 两点,设线段 AB的中点为 M ,求点 M的坐标精品资料 - - - 欢迎下载 - - - - - - - - - - - 欢迎下载 名师归纳 - - - - - - - - - -第 7 页,共 10 页 - - - - - - - - - - 本题由学生独立完成,教师补充完善解:设过点(2,0)P的直线 AB的倾斜角为,由已知可得:3cos5,4sin5所以,直线的参数方程为32545xtyt( t为参数) 代入22yx,整理得2815500tt中点 M的相应参数是1215216ttt,所以点 M的坐标是41 3(,)16 4【设计意图】 注重知识的落实, 通过问题的解决, 使学生进一步

16、理解所学知识五、归纳总结,提升认识先让学生从知识、 思想方法以及对本节课的感受等方面进行总结教师在学生总结的基础上再进行概括1知识小结本节课联系数轴、向量等知识,推导出了直线的参数方程,并进行了简单应用,体会了直线参数方程在解决有关问题时的作用2思想方法小结在研究直线参数方程过程中渗透了运动与变化、类比、数形结合、转化等数学思想【设计意图】 对学习内容有一个整体的认识,培养归纳、概括能力六、布置作业,巩固提高1. 教材 P391,3 ;精品资料 - - - 欢迎下载 - - - - - - - - - - - 欢迎下载 名师归纳 - - - - - - - - - -第 8 页,共 10 页

17、- - - - - - - - - - 2. 思考题:若直线 l 的参数方程为btyyatxx00(ba,为常数, t 为参数) ,请思考参数 t 的意义【设计意图】 使学生进一步巩固所学知识,加深对知识的理解,为学有余力的学生提供思考的空间七、板书设计教案设计说明本节课研究了直线的参数方程,并进行了简单的应用本节课注重知识的产生过程,培养学生综合运用所学知识分析问题和解决问题的能力在教学过程中渗透运动与变化、数形结合、类比、转化等数学思想,关注学生的参与和知识的落实本节课选择直线的参数方程的参数是比较困难的,这是因为从确定直线的几何条件较难联想到 “距离” 因此在教学中除了复习预备知识以外,

18、还复习了数轴联系数轴上点的坐标的几何意义,类比得到平面直角坐标系中的任意一条直线都可以当成数轴,这样直线上任意一点就可以用坐标t 表示,因此可以选择坐标 t 为直线参数方程中的参数从而,建立直线的参数方程就转化为建立坐标 t与坐标00,xy及倾斜角之间关系的问题这样设计既注重了知识的产生过程,又使学生深刻理解了参数的几何意义在教学过程中,注重以教师为主导,学生为主体的教学模式在实施教学和完成教学目标的过程中,适时将学生分组讨论、师生对话、学生动手、学生归纳小结等方式服务于“参数方程”知识的重点和难点的教学中,充分体现了以人为本,鼓励全体学生参与以及重视学法指导的教学新理念直线的参数方程1. 直线的参数方程 3.例题分析精品资料 - - - 欢迎下载 - - - - - - - - - - - 欢迎下载 名师归纳 - - - - - - - - - -第 9 页,共 10 页 - - - - - - - - - - 本节课恰当地利用多媒体辅助教学,增强了教学中的直观性tMM0精品资料 - - - 欢迎下载 - - - - - - - - - - - 欢迎下载 名师归纳 - - - - - - - - - -第 10 页,共 10 页 - - - - - - - - - -

展开阅读全文
相关资源
相关搜索

当前位置:首页 > 教育专区 > 高考资料

本站为文档C TO C交易模式,本站只提供存储空间、用户上传的文档直接被用户下载,本站只是中间服务平台,本站所有文档下载所得的收益归上传人(含作者)所有。本站仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。若文档所含内容侵犯了您的版权或隐私,请立即通知淘文阁网,我们立即给予删除!客服QQ:136780468 微信:18945177775 电话:18904686070

工信部备案号:黑ICP备15003705号© 2020-2023 www.taowenge.com 淘文阁