《集合的概念讲义(共7页).doc》由会员分享,可在线阅读,更多相关《集合的概念讲义(共7页).doc(7页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。
1、精选优质文档-倾情为你奉上主要考点梳理1集合某些指定的对象集在一起就成为一个集合,通常用大写字母, 表示,集合中的每个对象叫做这个集合的元素,通常用小写字母, 表示集合的分类:按元素多少可分为有限集:元素个数有限,无限集:元素个数无限,空集:不含任何元素;集合中元素的性质:确定性,互异性与无序性;集合的表示法:列举法,描述法与图示法2元素与集合,集合与集合的关系元素与集合之间用“”或“”连接:若是集合中的元素,则称属于,记作;若不是集合中的元素,则称不属于,记作元素与集合之间是个体与整体的关系,不存在大小与相等关系集合的任何一个元素都是集合的元素,则称是的子集(或包含),记作(或);若且,则称
2、等于,记作;若且,则称是的真子集,记作若集合是元集合,则集合有个子集,其中真子集有个易混易错点:空集:不含任何元素的集合易错小题考考你:问题:集合是空集吗?解:不是空集因为空集中没有任何元素,而集合中有元素“”题一:用符号“”或“”填空:(1)设是中国所有直辖市和省会城市组成的集合,则北京_,桂林_,大连_,杭州_;(2)若,则;(3)若,则,题二:用适当的符号填空:(1), (2),(3), (4),(5) (6).题三:已知集合,写出集合的所有子集题四:已知集合,若,求的值,并求出集合和题一:下列四个集合中,是空集的是( )A B C D 题二:已知集合,写出集合的所有子集,其中真子集是哪
3、几个?题三:已知集合 ,试用列举法表示集合题四:设,集合,求的值课后练习1题1: 求集合中的取值范围.题2:设A= ,B= |a+3|,2。已知5A,且,求a的值。题3:用适当的符号填空:(1);(2);(3);(4)设,则A B C.题4:写出下列集合的子集,真子集:(1) A=a,b,c; (2) B=; (3) C=.题5:已知集合,且,求的值课后练习2题1:下面有四个命题(1)地球周围的行星能确定一个集合;(2)实数中不是有理数的所有数的全体能确定一个集合;(3)1,2,3与1,3,2是不同集合;其中正确命题的个数是A.0个 B.1个 C.2个 D.3个题2:用记号“”或“”连接下面事
4、物和集合(1)C是你家庭成员的集合,a表示你父亲,b表示你母亲,c表示你祖父,d表示你祖母,e表示你外祖父,f表示你外祖母.(2)B是太阳系所有行星的集合,a表示地球,b表示月亮,c表示海王星,d表示哈雷彗星.f表示木星的最大卫星.g表示神州六号飞船.k表示牛郎星.(3)A是0和所有正整数组成的集合,.题3:用适当的符号填空(1) (1,2);(1,2) (x,y)|y=x+1 (2) x|x2+,(3)x|=x,xR x|-x=0.题4:满足条件,则集合的个数为_题5:已知集合,若,求的值。讲义参考答案金题精讲题一答案:解:(1)(2)因为,所以(3)题二 答案:解:(1) (2) (3)
5、(4) (5) (6)题三答案:解: 所以的所有子集是题四答案:集合课后拓展练习题一答案:解:对于选项D,方程无实数解,所以,因此选D题二答案:解:的所有子集是;其中真子集是题三答案:解:由,解得,所以题四答案:解:易知,所以只有 或解得,与矛盾解,得,所以课后练习1详解题1:答案:.详解:由,得.题2:答案:a=-4详解:,a=2或a=-4又,|a+3|5,a2或a-8 a=-4题3:答案:(1)0 0 ;(2),;(3) ;(4)A,B,C均表示奇数集,ABC.题4:答案:(1)子集,a,b,c,a,b,b,c,a, c,a,b,c. 真子集,a,b,c,a,b,b,c,a, c(2)子集
6、 ,.真子集(3) 子集,没有真子集详解: (1)因为是任何集合的子集,所以是集合A的子集;由A的任何一个元素构成的集合,都是A的子集,所以a,b,c是A的子集;由A的任何两个元素构成的集合,都是A的子集,所以a,b,b,c,a, c是A的子集;由A的任何三个元素构成的集合,也是A的子集,所以a,b,c=A是A的子集;对于任何集合A,除了集合A本身不是A的真子集外,其它子集均是A的真子集.(2) 同(1)B的子集有:,.对于任何集合A,除了集合A本身不是A的真子集外,其它子集均是A的真子集.(3) 因为是任何集合的子集,故也是C的子集. 因为C中没有元素,因此C就没有其它子集,所以C的子集只有
7、:.对于任何集合A,除了集合A本身不是A的真子集外,其它子集均是A的真子集.题5:答案:详解:由,又,得.若,则且,这样集合A与B中均有两个元素为0,故也不合题意.所以,解得,或.若,则.又因,所以.若,有,舍去,若y=-1,则,x=-1,于是,即.综上知.课后练习2详解题1:答案:B详解:(1)错误,因为“周围”是个模糊的概念,随便找一颗行星无法判断是否属于地球的周围,因此它不满足集合元素的确定性.(2)正确,虽然满足条件的数有无数多个,但任何一个元素都能判断出来是否属于这个集合.(3)错误,集合的定义是把某些指定的对象集在一起,而这个“对个单元素集.(4)错误,因为集合中元素是无序的.题2
8、:详解:题3:答案:,。详解:(1)分析与区间的关系是元素与集合的关系,根据与区间端点的关系,易得到答案,由(1,2)表示一个点,而(x,y)|y=x+1表示一个点集,将点(1,2)的坐标代入验证即可得到答案. x=1,y=2满足y=x+1.(2)分析数与2+的大小关系,即可得到答案;估算=1.4+2.2=3.6,2+=3.7,或()2=7+,(2+)2=7+(3)根据两边均为集合的形式,分析解方程得到两边集合的列举法表示方式,进而根据集合关系的判定方法易得到答案.左边=-1,1,右边=-1,0,1题4:答案:12个详解:由条件 且,则或或。若为四元素集合,则有、五个。若为五元素集合,则有、,七个。所以符合条件的集合有12个。题5:答案:详解:或解得或或但根据集合元素的互异性知,所以和应该舍去。当时专心-专注-专业