牛头刨床课程设计(共22页).doc

上传人:飞****2 文档编号:14491035 上传时间:2022-05-04 格式:DOC 页数:22 大小:838.50KB
返回 下载 相关 举报
牛头刨床课程设计(共22页).doc_第1页
第1页 / 共22页
牛头刨床课程设计(共22页).doc_第2页
第2页 / 共22页
点击查看更多>>
资源描述

《牛头刨床课程设计(共22页).doc》由会员分享,可在线阅读,更多相关《牛头刨床课程设计(共22页).doc(22页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。

1、精选优质文档-倾情为你奉上 目录工作原理牛头刨床是一种用于平面切削加工的机床,如图a)所示。电动机经过皮带和齿轮传动,带动曲柄2和固结在其上的凸轮8。刨床工作时,由导杆机构23456带动刨头6和刨刀7作往复运动。刨头左行时,刨刀不切削,称为空回行程,此时要求速度较高,以提高生产率。为此刨床采用有急回运动的导杆机构。刨刀每切削完一次,利用空回行程的时间,凸轮8通过四杆机构191011与棘轮带动螺旋机构(图中未画),使工作台连同工件作一次进给运动,以便刨刀继续切削。刨头在工作过程中,受到很大的切削阻力(在切削的前后各有一段0.05H的空刀距离,见图b),而空回行程中则没有切削阻力。因此刨头在整个运

2、动循环中,受力变化是很大的,这就影响了主轴的匀速转动,故需安装飞轮来减小主轴的速度波动,以提高切削质量和减少电动机容量。(a) (b) 图d 一.设计任务1、运动方案设计。2、确定执行机构的运动尺寸。3、进行导杆机构的运动分析。4、对导杆机构进行动态静力分析。5、汇总数据画出刨头的位移、速度、加速度线图以及平衡力矩的变化曲线。二.设计数据 本组选择第六组数据表1方案123456789导杆机构运动分析转速n2(r/min)484950525048475560机架lO2O4(mm)380350430360370400390410380工作行程H(mm)31030040033038025039031

3、0310行程速比系数K1.461.401.401.441.531.341.501.371.46连杆与导杆之比lBC/ lO4B0.250.30.360.330.30.320.330.250.28表2方案导杆机构的动态静力分析lO4S4xS6yS6G4G6PypJS4mmNmmkg.m21,2,30.5lO4B240502007007000801.14,5,60.5lO4B200502208009000801.27,8,90.5lO4B1804022062080001001.2方案飞轮转动惯量的确定nOz1zOz1JO2JO1JOJOr/minKg.m21-50.1514401020400.50

4、.30.20.26-100.1514401316400.50.40.250.211-150.1614401519500.50.30.20.2三.设计要求1、运动方案设计根据牛头刨床的工作原理,拟定12个其他形式的执行机构(连杆机构),给出机构简图并简单介绍其传动特点。2、确定执行机构的运动尺寸根据表一对应组的数据,用图解法设计连杆机构的尺寸,并将设计结果和步骤写在设计说明书中。注意:为使整个过程最大压力角最小,刨头导路 位于导杆端点B所作圆弧高的平分线上(见图d)。3、进行导杆机构的运动分析根据表一对应组的数据,每人做曲柄对应的1到2个位置(如图2中1,2,3,12各对应位置)的速度和加速度分

5、析,要求用图解法画出速度多边形,列出矢量方程,求出刨头6的速度、加速度,将过程详细地写在说明书中。4、对导杆机构进行动态静力分析根据表二对应组的数据,每人确定机构对应位置的各运动副反力及应加于曲柄上的平衡力矩。作图部分与尺寸设计及运动分析画在同一张纸上(2号或3号图纸)。提示:如果所给数据不方便作图可稍微改动数据,但各组数据应该一致,并列出改动值。5、数据总汇并绘图最后根据汇总数据画出一份刨头的位移、速度、加速度线图以及平衡力矩的变化曲线。6、完成说明书每人编写设计说明书一份。写明组号,对应曲柄的角度位置。四.设计方案选定如图2所示,牛头刨床的主传动机构采用导杆机构、连杆滑块机构组成的5杆机构

6、。采用导杆机构,滑块与导杆之间的传动角r始终为90o,且适当确定构件尺寸,可以保证机构工作行程速度较低并且均匀,而空回行程速度较高,满足急回特性要求。适当确定刨头的导路位置,可以使 图2压力角尽量小。 五.机构的运动分析选择第三组数据求得机构尺寸如下=180(k-1/k+1)=30lO2A= lO4O2sin(/2)=111.3mm lO4B=0.5H/sin/2) =773.0mm lBC=0.36lO4B=278.28mm lO4S4 =0.5lO4B=386.5mm曲柄位置“3”速度分析,加速度分析(列矢量方程,画速度图,加速度图) 曲柄在3位置时的机构简图如左图所示由图量得此位置的位移

7、S=86.9mm,Lo4A=514.7mm。设力、加速度、速度的方向向右为正。1.速度分析取曲柄位置“3”进行速度分析。因构件2和3在A处的转动副相连,故A3=A2,其大小等于2 lO2A,方向垂直于O2 A线,指向与2一致。 2=2n2/60 rad/s=5.23(rad/s)A3=A2=2lO2A=0.582m/s取构件3和4的重合点A进行速度分析。列速度矢量方程,得A4 = A3 + A4A3 大小 ? ?方向 O4A O2A O4B取速度极点P,速度比例尺v=0.005(m/s)/mm ,作速度多边形如图1-2 图12则由图1-2知:A3= lpA3v=0.582 m/s A4A3=

8、la3a4v =0.198m/s4=A4A3/lO4A=0.976(rad/s) B=4.lO4B=0.754(m/s)取5构件作为研究对象,列速度矢量方程,得 Vc = VB+ VcB大小 ? ?方向 XX O4B BC作速度多边行如图1-2,则由图1-2知C= lpcv=0.728m/s 5=CB/ lBC=0.701rad/s2.加速度分析取曲柄位置“3”进行加速度分析。因构件2和3在A点处的转动副相连,其大小等于22 lO2A方向由A指向O2。aA4A3K =24A4 A3=0.386 (m/s2) aA3 =22lO2A=3.04m/s2 aA3 =42lO4A=0.303(m/s2

9、) 取3、4构件重合点A为研究对象,列加速度矢量方程得: a A4 =a NA4+a TA4=a A3+a KA4A3+a RA4A3 大小 ? ?方向 AO4 O4 AAO2 O4A O4A 取加速度极点为P,加速度比例尺 a=0.005((m/s2)/mm),作加速度多边形如图1-3所示.则由图1-3知 aA4= uapa4=0.48(m/s2) aB=uapb=0.723(m/s2) a S4=0.5aB=0.362(m/s2) a4=atA4/lo4A=0.727(m/s2) a C=a B + a CB + atCB 大小:? ?方向:/xx CB BC a C=uapc= 0.64

10、6(m/s2) 图3 曲柄位置“9”速度分析,加速度分析(列矢量方程,画速度图,加速度图) 曲柄在9位置时的机构简图如左图所示由图量得此位置的位移S=375.38mm,Lo4A=358.61mm。设力、加速度、速度的方向向右为正。1.速度分析取曲柄位置“9”进行速度分析。因构件2和3在A处的转动副相连,故A3=A2,其大小等于2 lO2A,方向垂直于O2 A线,指向与2一致。 2=2n2/60 rad/s=5.23(rad/s)A3=A2=2lO2A=0.582m/s取构件3和4的重合点A进行速度分析。列速度矢量方程,得A4 = A3 + A4A3 大小 ? ?方向 O4A O2A O4B取速

11、度极点P,速度比例尺v=0.005(m/s)/mm ,作速度多边形如图1-4 图14则由图1-4知:A3= lpA3v=0.582 m/s A4A3= la3a4v =0.51m/s4=A4A3/lO4A=0.80(rad/s) B=4.lO4B=0.62(m/s)取5构件作为研究对象,列速度矢量方程,得 Vc = VB+ VcB大小 ? ?方向 XX O4B BC作速度多边行如图1-2,则由图1-2知C= lpcv=0.5978m/s 5=CB/ lBC=0.59rad/s2.加速度分析取曲柄位置“9”进行加速度分析。因构件2和3在A点处的转动副相连,其大小等于22 lO2A方向由A指向O2

12、。aA4A3K =24A4 A3=0.816 (m/s2) aA3 =22lO2A=3.04m/s2 aA4n =42lO4A=0.23(m/s2) 取3、4构件重合点A为研究对象,列加速度矢量方程得: a A4 =a NA4+a TA4=a A3+a KA4A3+a RA4A3 大小 ? ?方向 AO4 O4 AAO2 O4A O4A 取加速度极点为P,加速度比例尺 a=0.005((m/s2)/mm),作加速度多边形如图1-5所示.则由图1-5知 aA4= uapa4=1.26m/s2 aB=uapb=2.73m/s2 a S4=0.5aB=1.36m/s2 a4=atA4/lo4A=3.

13、45m/s2 a C=a B + a CB + atCB 大小:? ?方向:/xx CB BC a C=uapc= 2.72(m/s2) 六、机构动态静力分析一、首先依据运动分析结果,计算构件4的惯性力FI4(与aS4反向)、构件4的惯性力矩MI4(与a4反向,逆时针)、构件4的惯性力平移距离lhd(方位:右上)、构件6的惯性力矩FI6(与aC反向)。F14=m4aS4=G4/g.aS4=200/100.362=7.24(N)M14=a4JS4=0.7271.1Nm=0.7997(N/m) Lh4=0.7997/7.24=110.45(mm)FI6=m6aS6=G6/g.aS6=700.646

14、=45.22(N)1.取构件5、6基本杆组为示力体(如图所示) 因构件5为二力杆,只对构件(滑块)6做受力分析即可,首先列力平衡方程: FR65=FR56 FR54=FR45 FR16 + Fr + F16 + G6 + FR56=0大小 ? ?方向 xx xx xx x BC 按比例尺F=10N/mm作力多边形,如图所示,求出运动副反力FR16和FR56。俩图均为杆件 5,6 的受力分析。 按比例尺10N/mm作里多边形FR16=1087.9=879(N)FR56=10349.54=3495.4(N)对C点列力矩平衡方程: FR16lx + F16yS6 = FryF + +G6xS6 Lx

15、=507.097(mm)2.取构件3、4基本杆组为示力体(如图所示) 首先取构件4,对O4点列力矩平衡方程(反力FR54的大小和方向为已知),求出反力FR34: FR54=FR45 FR34=FR43构件4的受力分析 FR54lh1+FI4lh2+G4lh3FR34lO4A=0 Fr34=5156.51(N)再对构件4列力平衡方程,按比例尺F=10N/mm作力多边形如图所示。求出机架对构件4的反力FR14 F=0 FR54 + G4 + FI4 + FR34 + FR14=0 大小 ?方向 BC xx O4A ?? FR14=10X198.4=1984(N) 3.取构件2为示力体FR34=FR

16、43 FR32=FR23 FR23+FR12=0 FR12=5156.51(N) =0F FR32lh Mb = 0 Mb=500.00(N.m)二、计算构件4的惯性力FI4(与aS4反向)、构件4的惯性力矩MI4(与a4反向,逆时针)、构件4的惯性力平移距离lhd(方位:右上)、构件6的惯性力矩FI6(与aC反向)。 F14=m4aS4=27.2(N)M14=a4JS4=3.461.1Nm=3.806(N/m) Lh4=M14/F14=139.926(mm)FI6=m6aS6=190.4(N) 1.取构件5、6基本杆组为示力体(如图所示) 因构件5为二力杆,只对构件(滑块)6做受力分析即可,

17、首先列力平衡方程:构件5.6的受力简图 由于FR65=FR56 FR54=FR45 =oF FR16 + Fr + F16 + G6 + FR56=0大小 ? ?方向 xx xx xx xx BC 因此可以做出里多边形:按比例尺F=10N/mm作力多边形,如图所示,求出运动副反力FR16和FR56。FR16=10 71.02=710.2 (N)FR56=10 19.43=194.3(N)对C点列力矩平衡方程: =0McFR16lx + FI6yS6 = G6xS6 LX= 223.14(mm)首先取构件4,对O4点列力矩平衡方程(反力FR54的大小和方向为已知),求出反力FR34:FR54=F

18、R45 FR34=FR43=04OM FR54lh1+FI4lh2+G4lh3FR34lO4A=0FR34=284.56(N) 再对构件4列力平衡方程,按比例尺F=10N/mm作力多边形如图所示。求出机架对构件4的反力FR14:=0F FR54 + G4 + FI4+ FR34+ FR14=0大小 ? 方向 BC xx O4A ? FR14=1061.7=617(N)3.取构件2为示力体(如图所示)FR34=FR43 FR32=FR23 FR23+FR12=0 FR12=284.56(N) =0F FR32lh Mb = 0 Mb=20.86(N.m)七.数据总汇并绘图统计12人的数据得到如下

19、表位置123456789101112c(m/s)00.430.7280.600.8070.70.44-0.15-0.60-1.24-1.29-0.638ac(m/s2)5.43.260.6460.55-1.35-3.66-5.24-5.15-2.72-1.7644.941s(mm)023.586.9167241.3317.9378.1400357.4267131.262Mr(Nm)069500562.2564.5504.37256.512.620.8632.2-67.3-26.03根据以上数据用软件绘图得如下:速度位置变化曲线加速度位置变化曲线 位移位置变化曲线 平衡力矩位置变化曲线八、飞轮的

20、设计 1.确定Wmax 1将各点的平衡力矩画在坐标纸上,如下图。平衡力矩所做的功可以通过数据曲线与横坐标之间所夹得面积之和求的。依据在一个周期内及360内,曲柄驱动力矩所做的功等于阻力力矩所做的功,即可求的驱动力矩Md。在下图中,横坐标为曲柄转角,一个周期2,将一个周期变成180份,纵坐标轴为力矩: Md=Si/2=【(x1+ x2)/2+ (x2+x3)/2】2/180/2=199.7 N.m2根据盈亏功的原理,求得各盈亏功值,并做能量指示图,以曲柄的平均驱动力矩为分界线,求出各区段盈亏功值W1=104.72 N.m W2=733.03 N.m W3=471.23 N.m 曲柄的平均驱动力矩Md= 199.7 N.m曲柄的最大驱动力矩Md=570 N.mWmax=733.03N.m求集中在A点的等效转动惯量由公式:可知等效转动惯量:题目给出:又由定轴轮系的传动比:可得: 由最大盈亏功可以求得飞轮的转动惯量JF=900Wmax/(2n2) JC=167.93(N.m2)因此可以设计出所需要求的飞轮。九.参考文献1.机械原理(第七版) 吴克坚 等 主编 高等教育出版社2.机械原理课程设计曲继方主编,机械工业出版社专心-专注-专业

展开阅读全文
相关资源
相关搜索

当前位置:首页 > 教育专区 > 教案示例

本站为文档C TO C交易模式,本站只提供存储空间、用户上传的文档直接被用户下载,本站只是中间服务平台,本站所有文档下载所得的收益归上传人(含作者)所有。本站仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。若文档所含内容侵犯了您的版权或隐私,请立即通知淘文阁网,我们立即给予删除!客服QQ:136780468 微信:18945177775 电话:18904686070

工信部备案号:黑ICP备15003705号© 2020-2023 www.taowenge.com 淘文阁