怎样尽快提高初中学生的数学成绩(共3页).doc

上传人:飞****2 文档编号:14439765 上传时间:2022-05-04 格式:DOC 页数:3 大小:19.50KB
返回 下载 相关 举报
怎样尽快提高初中学生的数学成绩(共3页).doc_第1页
第1页 / 共3页
怎样尽快提高初中学生的数学成绩(共3页).doc_第2页
第2页 / 共3页
点击查看更多>>
资源描述

《怎样尽快提高初中学生的数学成绩(共3页).doc》由会员分享,可在线阅读,更多相关《怎样尽快提高初中学生的数学成绩(共3页).doc(3页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。

1、精选优质文档-倾情为你奉上怎样尽快提高初中学生的数学成绩(精品转) 一、该记的记,该背的背,不要以为理解了就行 有的同学认为,数学不像英语、历史、地理,要背单词、背年代、背地名,数学靠的是智慧、技巧和推理。我说你只讲对了一半。数学同样也离不开记忆。试想一下,小学的加、减、乘、除运算要不是背熟了“乘法九九表”,你能顺利地进行运算吗?尽管你理解了乘法是相同加数的和的运算,但你在做99时用九个9去相加得出81就太不合算了。而用“九九八十一”得出就方便多了。同样,是运用大家熟记的法则做出来的。同时,数学中还有大量的规定需要记忆,比如规定(a0)等等。因此,我觉得数学更像游戏,它有许多游戏规则(即数学中

2、的定义、法则、公式、定理等),谁记住了这些游戏规则,谁就能顺利地做游戏;谁违反了这些游戏规则,谁就被判错,罚下。因此,数学的定义、法则、公式、定理等一定要记熟,有些最好能背诵,朗朗上口。比如大家熟悉的线段、角、角平分线、三角形的有关概念,有的同学背得出,有的就背不出。在这里,我向背不出的同学敲一敲警钟,如果背不出这些,将会对今后的学习造成很大的麻烦,因为今后的学习将会大量地用到这些概念,特别是八年级即将学的全等三角形,其中相当重要的角平分线定理就是由这些概念推出来的。 对数学的定义、法则、公式、定理等,理解了的要记住,暂时不理解的也要记住,在记忆的基础上、在应用它们解决问题时再加深理解。打一个

3、比方,数学的定义、法则、公式、定理就像木匠手中的工具。 二、掌握几个重要的数学思想1、“方程”的思想 数学是研究事物的空间形式和数量关系的,初中最重要的数量关系是等量关系,其次是不等量关系。最常见的等量关系就是“方程”。比如等速运动中,路程、速度和时间三者之间就有一种等量关系,可以建立一个相关等式:速度时间=路程,在这样的等式中,一般会有已知量,也有未知量,像这样含有未知量的等式就是“方程”,而通过方程里的已知量求出未知量的过程就是解方程。我们在小学就已经接触过简易方程,而七年级则比较系统地学习解一元一次方程和二元一次方程组,并总结出解一元一次方程的五个步骤及二元一次方程组的解法。如果学会并掌

4、握了这五个步骤,任何一个一元一次方程都能顺利地解出来。八、九年级我们还将学习一次函数及其图象,正比例函数,反比例函数等,到高中我们还将学习初中各年级课件教案习题汇总语文数学英语物理化学 指数方程、对数方程、线性方程组、参数方程、极坐标方程等。解这些方程的思维方法几乎一致,都是通过一定的方法将它们转化成一元一次方程或一元二次方程的形式,然后用大家熟悉的解一元一次方程的五个步骤或者解一元二次方程的求根公式加以解决。物理中的能量守恒,化学中的化学平衡式,现实中的大量实际应用,都需要建立方程,通过解方程来求出结果。因此,同学们一定要将解一元一次方程和解一元二次方程学好,进而学好其它形式的方程。 所谓的

5、“方程”思想就是对于数学问题,特别是现实当中碰到的未知量和已知量的错综复杂的关系,善于用“方程”的观点去构建有关的方程,进而用解方程的方法去解决它。 2、“数形结合”的思想 大千世界,“数”与“形”无处不在。任何事物,剥去它的质的方面,只剩下形状和大小这两个属性,就交给数学去研究了。初中数学的两个分支-代数和几何,代数是研究“数”的,几何是研究“形”的。但是,研究代数要借助“形”,研究几何要借助“数”,“数形结合”是一种趋势,越学下去,“数”与“形”越密不可分,到了高中,就出现了专门用代数方法去研究几何问题的一门课,叫做“解析几何”。在七年级,建立平面直角坐标系后,八年级研究函数的问题就离不开

6、图象了。往往借助图象能使问题明朗化,比较容易找到问题的关键所在,从而解决问题。在今后的数学学习中,要重视“数形结合”的思维训练,任何一道题,只要与“形”沾得上一点边,就应该根据题意画出草图来分析一番,这样做,不但直观,而且全面,整体性强,容易找出切入点,对解题大有益处。尝到甜头的人慢慢会养成一种“数形结合”的好习惯。 3、“对应”的思想 “对应”的思想由来已久,比如我们将一支铅笔、一本书、一栋房子对应一个抽象的数“1”,将两只眼睛、一对耳环、双胞胎对应一个抽象的数“2”;随着学习的深入,我们还将“对应”扩展到对应一种形式,对应一种关系,等等。比如我们在计算或化简中,将对应公式的左边,x对应a,

7、y对应b,再利用公式的右边直接得出原式的结果。这就是运用“对应”的思想和方法来解题。七年级我们已经看到数轴上的点与实数之间的一一对应,直角坐标平面上的点与一对有序实数之间的一一对应,八年级还有函数与其图象之间的对应。“对应”的思想在今后的学习中将会发挥越来越大的作用。 4、“转化”的思想 解数学题最根本的途径是“化难为易,化繁为简,化未知为已知”,也就是把复杂繁难的数学问题通过一定的数学思维、方法和手段,逐渐将它转变成一个大家熟知的简单的数学形式,然后通过大家所熟悉的数学运算把它解决。 比如,我们学校要扩大校园,需要向高新区管委会征地。管委会给了一块形状不规则的地,如何丈量它的面积呢?首先,使

8、用小平板仪(有条件的话使用水准仪、经纬仪)依据一定的比例,将实际地形绘制成纸上图形,然后将纸上图形分割成若干块梯形、长方形、三角形,利用学过的面积计算方法,计算出这些图形的面积之和,也就得到了这块不规则地形的总面积。在这里,我们把无法计算的不规则图形转化成了可以计算的规则图形,从而解决了土地丈量问题。另外,我们前面提到的各种多元方程、高次方程,利用“消元”、“降次”等方法,最终都可以把它们转化成一元一次方程或一元二次方程,然后用已知的步骤或公式把它们解决。 “转化”的思想,是解题的最重要的思维习惯。面对难题,面对没有见过的题,首先就要想到“转化”,也总是能够“转化”的。平时,要多留心老师是怎样

9、解题的,是怎样“化难为易、化繁为简、化未知为已知”的。同学之间也应多交流交流“成功转化”的体会,深入理解“转化”的真正含义,切实掌握“转化”的思维和技巧。 三、自学能力的培养 在学习新概念、新运算时,老师们总是通过已有知识自然而然过渡到新知识,水到渠成,亦即所谓“温故而知新”。因此说,数学是一门能自学的学科,自学成才最典型的例子就是数学家华罗庚。 我们在课堂上听老师讲解,不光是学习新知识,更重要的是潜移默化老师的那种数学思维习惯,逐渐地培养起自己对数学的一种悟性。曾经听一位物理老师说:我是教物理的,学生物理学得好,不是我教出来的,而是他们自己悟出来的。当然,这位老师是谦虚的,但他说明了一个道理

10、,学生不能被动地学习,而应主动地学习。一个班里几十个学生,同一个老师教,差异那么大,这就是学习主动性问题了。 自学能力越强,悟性就越高。随着年龄的增长,同学们的依赖性应不断减弱,而自学能力则应不断增强。因此,要养成预习的习惯。在老师讲新课前,能不能运用自己所学过的已掌握的旧知识去预习新课,结合新课中的新规定去分析、理解新的学习内容。由于数学知识的无矛盾性,你所学过的数学知识永远都是有用的,都是正确的,数学的进一步学习只是加深拓广而已。因此,以前的数学学得扎实,就为以后的进取奠定了基础,就不难自学新课。 同时,在预习新课时,碰到什么自己解决不了的问题,带着问题去听老师讲解新课,收获之大是不言而喻

11、的。有些同学为什么听老师讲新课时总有一种似懂非懂的感觉,或者是“一听就懂、一做就错”,就是因为没有预习,没有带着问题学,没有将“要我学”真正变为“我要学”,力求把知识变为自己的。学来学去,知识还是别人的。检验数学学得好不好的标准就是会不会解题。听懂并记忆有关的定义、法则、公式、定理,只是学好数学的必要条件,能独立解题、解对题才是学好数学的标志。 四、自信才能自强 在考试中,总是看见有些同学的试卷出现许多空白,即有好几题根本没有动手去做。当然,俗话说,艺高胆大,艺不高就胆不大。但是,做不出是一回事,没有去做则是另一回事。稍为难一点的数学题都不是一眼就能看出它的解法和结果的。要去分析、探索、比比画

12、画、写写算算,经过迂回曲折的推理或演算,才显露出条件和结论之间的某种联系,整个思路才会明朗清晰起来。你都没有动手去做,又怎么知道自己不会做呢?即使是老师,拿到一道难题,也不能立即答复你。也同样要先分析、研究,找到正确的思路后才向你讲授。不敢去做稍为复杂一点的题(不一定是难题,有些题只不过是叙述多一点),是缺乏自信心的表现。在数学解题中,自信心是相当重要的。要相信自己,只要不超出自己的知识范畴,不管哪道题,总是能够用自己所学过的知识把它解出来。要敢于去做题,要善于去做题。这就叫做“在战略上藐视敌人,在战术上重视敌人”。 具体解题时,一定要认真审题,紧紧抓住题目的所有条件不放,不要忽略了任何一个条

13、件。一道题和一类题之间有一定的共性,可以想想这一类题的一般思路和一般解法,但更重要的是抓住这一道题的特殊性,抓住这一道题与这一类题不同的地方。数学的题目几乎没有相同的,总有一个或几个条件不尽相同,因此思路和解题过程也不尽相同。有些同学老师讲过的题会做,其它的题就不会做,只会依样画瓢,题目有些小的变化就干瞪眼,无从下手。当然,做题先从哪儿下手是一件棘手的事,不一定找得准。但是,做题一定要抓住其特殊性则绝对没错。选择一个或几个条件作为解题的突破口,看由这个条件能得出什么,得出的越多越好,然后从中选择与其它条件有关的、或与结论有关的、或与题目中的隐含条件有关的,进行推理或演算。一般难题都有多种解法,

14、条条大路通北京。要相信利用这道题的条件,加上自己学过的那些知识,一定能推出正确的结论。 数学题目是无限的,但数学的思想和方法却是有限的。我们只要学好了有关的基础知识,掌握了必要的数学思想和方法,就能顺利地对付那无限的题目。题目并不是做得越多越好,题海无边,总也做不完。关键是你有没有培养起良好的数学思维习惯,有没有掌握正确的数 学解题方法。当然,题目做得多也有若干好处:一是“熟能生巧”,加快速度,节省时间,这一点在考试时间有限时显得很重要;一是利用做题来巩固、记忆所学的定义、定理、法则、公式,形成良性循环。 解题需要丰富的知识,更需要自信心。没有自信就会畏难,就会放弃;只有自信,才能勇往直前,才

15、不会轻言放弃,才会加倍努力地学习,才有希望攻克难关,迎来属于自己的春天。 五、制作错题本,及时订正错误 从认知的规律来讲,人的大脑有“先入为主”的习惯,当大脑把错误的东西当作正确的东西记忆之后,它就相信它是正确的,并且记住了。从学习的效果来讲,学生做错的题目,正是他所不懂的,也正是自己需要弥补的。如果我们对这些错误不加正视,听之任之,必然会在作业或考试中再次出错,从而留下遗憾。虽然订正做错的题目不很光彩,但能从中发现自己对知识掌握中的不足之处,进行亡羊补牢还为时不晚,而且在订正的过程中,还能满足自我心理上的一种成就感。学海无涯,知识无穷,在作业时出现错误完属正常,关键要及时纠正错误,自觉订正作业中的差错,其目的是为了不出现重复性的错误。这样不仅能弥补自己知识上的缺陷,更能促进下一阶段的学习,以不断丰富自己的知识,为取得好成绩打下扎实的基础。 此外,在学习中还应该不断地总结与反思,及时纠错与纠偏,我们一定会学好数学的。专心-专注-专业

展开阅读全文
相关资源
相关搜索

当前位置:首页 > 教育专区 > 教案示例

本站为文档C TO C交易模式,本站只提供存储空间、用户上传的文档直接被用户下载,本站只是中间服务平台,本站所有文档下载所得的收益归上传人(含作者)所有。本站仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。若文档所含内容侵犯了您的版权或隐私,请立即通知淘文阁网,我们立即给予删除!客服QQ:136780468 微信:18945177775 电话:18904686070

工信部备案号:黑ICP备15003705号© 2020-2023 www.taowenge.com 淘文阁