苏教版六年级数学下册各单元知识要点(共7页).docx

上传人:飞****2 文档编号:14377326 上传时间:2022-05-04 格式:DOCX 页数:7 大小:21.22KB
返回 下载 相关 举报
苏教版六年级数学下册各单元知识要点(共7页).docx_第1页
第1页 / 共7页
苏教版六年级数学下册各单元知识要点(共7页).docx_第2页
第2页 / 共7页
点击查看更多>>
资源描述

《苏教版六年级数学下册各单元知识要点(共7页).docx》由会员分享,可在线阅读,更多相关《苏教版六年级数学下册各单元知识要点(共7页).docx(7页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。

1、精选优质文档-倾情为你奉上苏教版六年级数学下册知识点第一单元知识要点 扇形统计图一、扇形统计图的意义:用整个圆的面积表示总数,用圆内各个扇形面积表示各部分数量同总数之间的关系。也就是各部分数量占总数的百分比(因此也叫百分比图)。二、常用统计图的优点:1、条形统计图:可以清楚的看出各种数量的多少。2、折线统计图:不仅可以看出各种数量的多少,还可以清晰看出数量的增减变化情况。3、扇形统计图:能够清楚的反映出各部分数量同总数之间的关系。三、扇形面积的大小表示的意义:在同一个圆中,扇形的大小与这个扇形的圆心角的大小有关,圆心角越大,扇形越大。(因此扇形面积占圆面积的百分比,同时也是该扇形圆心角度数占圆

2、周角度数的百分比。) 第二单元 圆柱和圆锥知识要点知识点一:圆柱、圆锥的认识相关概念:圆柱由一个上底面、一个下底面和一个侧面组成。上下底面是两个完全相同的圆形;侧面是一个曲面。圆柱的高:上下底面之间的距离。圆柱有无数条高,每条高相等。圆锥由一个底面和一个侧面组成。底面是一个圆形;侧面是一个曲面。圆锥的高:圆锥的定点到底面圆心的距离。圆锥只有一条高。知识点二:圆柱侧面积的计算方法理解掌握:圆柱的侧面展开图:有可能是长方形,也有可能是正方形。假如是长方形,那么长方形的长a,就是圆柱底面的周长C,宽b就是圆柱的高h。长方形的面积 S=ab=Ch=2rh=2rh,就是圆柱的侧面积。假如是正方形,那么正

3、方形的边长a既等于圆柱底面的周长C,也等于圆柱的高h,也就是说底面周长和高相等。正方形的面积 S=aa=Ch=2rh=2rh,就是圆柱的侧面积。所以圆柱的侧面积公式=Ch或者=2rh或者=dh知识点三:圆柱表面积的计算方法理解掌握:圆柱的表面积由一个侧面加上两个底面组成,计算方法是S表=S侧+2S底,因为S侧=Ch,S底=r2,所以S表=Ch+2r2 =2rh+2r2 用乘法分配率得圆柱的表面积公式 =2r(h+r)例1:一个圆柱形的罐头盒,高是12.56厘米,它的侧面展开图是一个正方形,做一个这样的罐头盒需要多少铁皮? 解析:本题中罐头盒的侧面展开图是正方形,说明圆柱的底面周长和高相等,都等

4、于12.56厘米,可以根据圆的周长公式C=2r,把r先求出,最后再用圆柱的表面积公式。解:12.563.142=2(厘米)23.142(12.56+2)=182.8736平方厘米 答:做一个这样的罐头盒需要182.8736平方厘米铁皮。知识点四:圆柱体积的计算方法理解掌握:利用我们以前学过的长方体的体积公式V长方体=S底h,可以得到圆柱的体积公式V圆柱= S底h,长方体的底面积是长方形或正方形,而圆柱的底面积是圆。相关公式:已知半径和高,V圆柱=r2h已知直径和高,V圆柱=(d2)2h已知周长和高,V圆柱=(C2)2h难点解析:把圆柱的底面平均分成n份,切开后平成一个近似的长方体。得到的结论:

5、圆柱的底面周长等于长方体的两条长的和;圆柱的半径等于长方体的宽;圆柱的高等于长方体的高;圆柱的体积等于长方体的体积;圆柱的侧面=长方体的前、后两个面积的和(长高);圆柱的上、下底面和等于长方体的上、下底面和(长宽),所以圆柱的表面积比长方体的表面积少左右两个侧面(宽高)。知识点五:圆锥体积的计算方法理解掌握:根据书本上的实验可以得到结论:等底等高的圆柱和圆锥,圆柱的体积是圆锥的3倍,或者说圆锥的体积是圆柱的三分之一。用字母表示为V圆柱=3V圆锥或者V圆锥=1/3V圆柱。相关公式:只需要在圆柱的相关公式前面乘以三分之一。 已知半径和高,V圆锥=1/3r2h 已知直径和高,V圆锥=1/3(d2)2

6、h 已知周长和高,V圆锥=1/3(C2)2h重点解析:在一个圆柱里面挖一个最大的圆锥,圆锥的体积和剩余部分的体积比是1:2。例1:工地上的沙堆成近似的圆锥形,底面周长是12.56米,高是1.5米,每立方米沙子约重1.7吨,这堆沙子共重多少吨?解析:根据题目中的条件,可以用公式V圆锥=1/3(C2)h1/33.14(12.5623.14)21.5=6.28立方米1.76.28=10.676吨 答:这堆沙子共重10.676吨。知识点七:圆柱和圆锥的横截面理解掌握:圆柱横截面的分割方法: 按底面的直径分割,这样分割的横截面是长方形或者是正方形,如果横截面是正方形说明圆柱的底面直径和高相等。 按平行于

7、底面分割,这样分割的横截面是圆。圆锥横截面的分割方法: 按圆锥的高分割,这样分割的横截面是等腰三角形。 按平行于底面分割,这样分割的横截面是圆。第三单元 解决问题的策略知识要点 学会用“转化”的策略寻求解决问题的思路,并能根据具体的问题确定合理的解题方法,从而有效的解决问题。第四单元 比例知识点一:图像的放大和缩小 理解掌握:把图形按1:n的比缩小,就是把图形的每条边都放大到原来的1/n; 把图形按n:1的比放大,就是把图形的每条边都缩小到原来的n倍。 知识点二:比例的意义 理解掌握:1、比例:表示两个比相等的式子。任何一个比例都是由两个内项和两个外项组成。 2、比和比例的区别:(1)比是表示

8、两个数相除的关系。比例是表示两个比相等的关系。 (2)比由两项组成(前项、后项)。比例由四项组成(两个内项、两个外项)。 知识点三:应用比的含义组成比例 理解掌握:判断两个比能否组成比例,关键要看它们的比值是否相等。若比值相等,则能组成比例;若比值不想等, 则不能组成比例。 知识点四:比例的基本性质 理解掌握:比例的基本性质:在比例里,两个外项的积等于两个内项的积。 若a:b=c:d,那么ad=bc。 若用分数表示比a/b=c/d,那么ad=bc。-十字交叉法 知识点五:解比例 理解掌握:解比例的依据是比例的基本性质,已知比例中的任意三项,就可以求出另外一项。 例1: 5:8=x:16 1/9

9、 : 1/4 =x:18 8x=516 4:9 =x:18 x=10 9x =418 x =8 知识点六:用比例解应用题 解题方法:审题列出比例等量关系式-设未知数列出比例方程-解比例并检验写答 例1:A、B两种商品的价格比是5:3,如果它们的价格分别上涨了420元后,价格比是6:5。那么A商品原来多少元? 解析:本题中告诉我们A、B两种商品涨价前后的价格比,利用比例的基本性质可以得到等量关系是: (A商品原来的价格+420元):(B商品原来的价格+420元)=6:5 利用比例基本性质,设A商品原来的价格是5x元,B商品原来的价格是3x元 列出比例方程 (5x+420):(3x+420)=6:

10、5 (5x+420)5 =(3x+420)6-比例基本性质 25x+2100 =18x+2520-乘法分配率 25x-18x=2520-2100-等式基本性质x =60 560=300元 答:A商品原来300元。 知识点七:比例尺的意义 理解掌握:比例尺就是图上距离与实际距离的比。 图上距离是比的前项,实际距离是比的后项,比例尺是一个最简单的整数比。 相关公式:(1)比例尺=图上距离实际距离 (2) 图上距离=比例尺实际距离 (3) 实际距离=图上距离比例尺 知识点八:比例尺的应用 理解掌握:(1)注意比例尺的前后单位是否统一。一般比例尺的单位是厘米,而题目往往会给出以千米做单位的比例 尺。如

11、1:40千米=1:厘米 (2)因为图上距离是比例的前项,实际距离是比例的后项,所以当比例尺的图上距离大于实际距离时,表示设计图纸大于实际物体,如比例尺是10:1(经常在精密仪器、化学领域中出现);当比例尺的图上距离小于实际距离时,表示设计图纸小于实际物体,如比例尺1:100(比如设计一栋教学楼)。第五单元 确定位置知识点一、根据方向和距离确定物体的位置 理解掌握:(1)用字母表示方向。S表示“南”,W表示“西”,E表示“东”,N表示“北”。 (2)理解“X偏X若干度”,如南偏西15,表示由南面向西面旋转15的方向;西偏南15,表示有西面向南面旋转15的方向。这两个方向一样吗?请同学们仔细考虑一

12、下?如果不一样,那么应该这么说呢?南偏西15= 偏 ;西偏南15= 偏 。 (3)如何来用方向和距离确定位置呢? 答:一找观察地点和实际地点,二看实际地点在观察地点的什么方向上,三量出观察地点和实际地点的距离,四标注要清楚。 知识点二、根据平面图用方向和距离描述简单的行走路线 解题方法:描述行走路线的方法:按行走路线,确定观测点及行走方向和路程,用“先然后再”等词语,按顺序叙述。 第六单元 正比例和反比例知识要点知识点一、正比例的意义及应用理解掌握:(1)正比例的定义:两种相关联的量,一种量变化,另一种量也随着变化,如果这两种量相对应的两个数 的比值(在除法中是叫做商)一定,那么这两个量叫做成

13、正比例的量,它们的关系叫做成正比例关系。(2)如果用字母x和y分别表示两种相关的量,用k表示它们的比值(一定),正比例关系式可用x/y=k。(3)判断两种量是否成正比例的应用方法:1、判断两个是否相关联;2、判断这两个量的比值是否一定,比值一定就成正比例关系; 反之不成正比例关系。(简说:用除法,商一定,成正比)知识点二、正比例的图像理解掌握:正比例图像是一条直线。从图像中,可以直观看到两种量的变化情况,由一个量的值可以直接找到对应的另一个量的值。知识点三:反比例的意义及应用 理解掌握:(1)反比例的定义:两种相关联的量,一种量变化,另一种量也随着变化,如果这两种量相对应的两个数的积一定,那么

14、这两个量叫做成反比例的量,它们的关系叫做成反比例关系。(2)如果用字母x和y分别表示两种相关的量,用k表示它们的比值(一定),反比例关系式可用xy=k。(3)判断两种量是否成反比例的应用方法:1、判断两个是否相关联;2、判断这两个量的积是否一定,积一定就成反比例关系;反之 不成反比例关系。(简说:用乘法,积一定,成反比)知识点四:用正反比例解应用题解题方法:(1) 判断题目中相关联的量成什么关系,列出等量关系式; (2) 设未知数,列方程; (3) 解方程并检验写答。 例1:一部机器上有两个互相咬合的齿轮,主动轮有80个齿,每分钟转90转。从动轮有48个齿,每分钟转多少转? 解析:先判断齿数和转数成反比例关系,理由是齿数转数=总齿数(一定)。 等量关系是:主动轮齿数主动轮转数=从动轮齿数从动轮转数 再设从动轮每分钟转x转。 48x=8090 x=150 答:从动轮每分钟转150转。 专心-专注-专业

展开阅读全文
相关资源
相关搜索

当前位置:首页 > 教育专区 > 教案示例

本站为文档C TO C交易模式,本站只提供存储空间、用户上传的文档直接被用户下载,本站只是中间服务平台,本站所有文档下载所得的收益归上传人(含作者)所有。本站仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。若文档所含内容侵犯了您的版权或隐私,请立即通知淘文阁网,我们立即给予删除!客服QQ:136780468 微信:18945177775 电话:18904686070

工信部备案号:黑ICP备15003705号© 2020-2023 www.taowenge.com 淘文阁