分类计数原理与分步计数原理(共5页).doc

上传人:飞****2 文档编号:14338051 上传时间:2022-05-04 格式:DOC 页数:5 大小:222KB
返回 下载 相关 举报
分类计数原理与分步计数原理(共5页).doc_第1页
第1页 / 共5页
分类计数原理与分步计数原理(共5页).doc_第2页
第2页 / 共5页
点击查看更多>>
资源描述

《分类计数原理与分步计数原理(共5页).doc》由会员分享,可在线阅读,更多相关《分类计数原理与分步计数原理(共5页).doc(5页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。

1、精选优质文档-倾情为你奉上分类计数原理与分步计数原理一、知识精讲分类计数原理与分步计数原理分类计数原理:做一件事,完成它可以有类办法,在第一类办法中有种不同的方法 ,在第二类办法中有种不同的方法,在第类办法中有种不同的方法,那么完成这件事共有种不同的办法。分步计数原理:做一件事,完成它需要分成个步骤,做第一步有种不同的方法,做第二步有种不同的方法,做第步有种不同方法,那么完成这件事共有种不同的方法。特别注意:两个原理的共同点是把一个原始事件分解成若干个分事件来完成。不同点在于,一个与分类有关,一个与分步有关,如果完成一件事情共有类办法,这类办法彼此之间相互独立的,无论哪一类办法中的哪一种方法都

2、能单独完成这件事情,求完成这件事情的方法种数,就用分类计数原理;如果完成一件事情需要分成个步骤,各个步骤都是不可缺少的,需要依次完成所有的步骤,才能完成这件事,而完成 每一个步骤各有若干种不同的方法,求完成这件事情的方法种数就用分步计数原理。二、例题例1、把一个圆分成3块扇形,现在用5种不同的颜色给3块扇形涂色,要求相邻扇形的颜色互不相同,问有多少钟不同的涂法?若分割成4块扇形呢?dcab解:(1)不同涂色方法数是:(种)(2)如右图所示,分别用a,b,c,d记这四块,a与c可同色,也可不同色,先考虑给a,c两块涂色,分两类(1) 给a,c涂同种颜色共种涂法,再给b涂色有4种涂法,最后给d涂色

3、也有4种涂法,由乘法原理知,此时共有种涂法(2) 给a,c涂不同颜色共有种涂法,再给b涂色有3种方法,最后给d涂色也有3种,此时共有种涂法故由分类计数原理知,共有+=260种涂法。例2、甲、乙、丙、丁四个公司承包8项工程,甲公司承包3项工程,乙公司承包1项,丙、丁各承包2项,问共有_种承包方式?解:由分步计数原理有:种。思维点拔【思维点拔】 解决这类题首先要明确:“完成一件事”指什么?如何完成这件事(即分步还是分类)?进而确定应用分类计数原理还是分步计数原理。 分步计数原理中的“分步”程序要正确。“步”与“步”之间是连续的,不间断的,缺一不可。 分类计数原理中的“分类”要全面, 不能遗漏。“类

4、”与“类之间是并列的、互斥的、独立的,也就是说,完成一件事情,每次只能选择其中的一类办法中的某一种方法。 例3 电视台在”欢乐今宵”节目中拿出两个信箱,其中存放着先后两次竞猜中成绩优秀的观众来信,甲信箱中有30封,乙信箱中有20封.现有主持人抽奖确定幸运观众,若先确定一名幸运之星,再从两信箱中各确定一名幸运伙伴,有多少种不同的结果?解: (1) 幸运之星在甲箱中抽,再在两箱中各定一名幸运伙伴,有302920=1740种结果;(3) 幸运之星在乙箱中抽,同理有201930=11400种结果。由分类计数原理,共有 17400+11400=28800 种不同结果。【评述】在综合运用两个原理时,一般先

5、分类再分步。例4 从集合1,2,3, ,10中,选出由5个数组成的子集,使得这5个数中的任何两个数的和不等于11,这样的子集共有多少个?解:和为11的数共有5组:1与10,2与9,3与8,4与7,5与6,子集中的元素不能取自同一组的两数,即子集中的元素取自5个组中的一个数,而每个数的取法有2种,所以子集个数为22222=25=32【评述】本题的关键是先找出和为11的5组数,然后利用分步计数原理求出结果。练习题:在一个正六边形的六个区域栽种观赏植物(如图),要求同一块中种同一种植物,相邻的两块种不同的植物,现有4种不同的植物可供选择,则有多少种栽种方案?解:考虑A、C、E种同一种植物,此时共有种

6、方法。考虑A、C、E种二种植物,此时共有种方法。考虑A、C、E种同三种植物,此时共有种方法。故总计有108+432+192=732种方法。三、小结:1分类计数原理和分步计数原理是解决排列、组合问题的理论基础。这两个原理的本质区别在于分类与分步,分类用分类计数原理,分步用分步计数原理 。2元素能重复的问题往往用计数原理。3注意:“类”间相互独立,“步”间相互联系。 排列一、内容归纳1知识精讲:(1)排列:从n个不同的元素中取出m个(mn)元素并按一定的顺序排成一列,叫做从n个不同元素中取出m个元素的一个排列.(2)排列数: 从n个不同的元素中取出m个(mn)元素的所有排列的个数.(3)排列数公式

7、:.规定 0!=12重点难点: 正确区分排列与组合,熟练应用公式计算排列数3思维方式: 分类讨论的思想.4特别注意:排列数公式的连乘形式常用于计算,公式的阶乘形式常用于化简与证明.二、例题:例1、有7 名学生站成一排,下列情况各有多少种不同的排法。(1)甲、乙必须排在一起;(2)若甲不在排头,乙不在排尾;(3)甲、乙、丙互不相邻;(4)甲、乙之间须隔一个人;(5)若甲必须在乙的右边(可以相邻,也可以不相邻),有多少种站法?(6)若将7人分成两排,前四后三,有多少种站法?解:(1)(捆绑法); (2);(3)(插空法); (4);(5); (6)【思维点拨】对于相邻问题,常用“捆绑法”;对于不相

8、邻问题,常用“插空法”(特殊元素后考虑);对于“在”与“不在”的问题,常常使用“直接法”或“排除法”,(特殊元素先考虑)。例2、用09这十个数字组成没有重复数字的正整数(1)共有几个三位数?(2)末位数字是4的三位数有多少?(3)求所有三位数的和;(4)四位偶数有多少?(5)比5231大的四位数有多少?解:(1) 百位不能为 “0”,因此共有个;(2)末位为4,百位不能为 “0”,因此共有=64个(3)考虑各数位上的数字之和,可得所有三位数的和为:(4)分末位数字是否为0两种情况考虑。种;(5)千位上为9,8,7,6的四位数各有个;千位上是5,百位上为3,4,6,7,8,9的四位数各有个; 千

9、位上是5,百位上为2,十位上为4,6,7,8,9的四位数各有个; 千位上是5,百位上为2,十位上为3且满足要求的共有5个,因此共有2392种。【思维点拨】注意区分分类计数原理与分步计数原理的运用。练习:由0,1,2,3,4,5共六个数字组成没有重复数字的六位数,问其中小于50万又不是5的倍数的数共有几个?解:先将0和5放到中间4个数位上,然后再排其他数字,故共有个数符合要求.例3:一天要排语文、数学、英语、生物、体育、班会六节课(上午四节,下午二节),要求上午第一节不排体育,数学课排在上午,班会课排在下午,问共有几种不同的排课方法?解法一:(从数学课入手)(第一类)数学排在第一节,班会课排在下

10、午,其余四科任排,得(第二类)数学排在上午另三节中的一节,班会排在下午,体育排在余下(不会第一节)三节中的一节,其余三科任排,得共有排法(种)解法二(从体育课入手)(第一类)体育课在上午 (第二类)体育课在下午 共有排法(种)【思维点拨】注意特殊的位置和特殊的元素先考虑。三、小结1对有约束条件的排列问题,应注意如下类型: 某些元素不能在或必须排列在某一位置;某些元素要求连排(即必须相邻);某些元素要求分离(即不能相邻);2基本的解题方法: 有特殊元素或特殊位置的排列问题,通常是先排特殊元素或特殊位置,称为优先处理特殊元素(位置)法(优先法); 某些元素要求必须相邻时,可以先将这些元素看作一个元

11、素,与其他元素排列后,再考虑相邻元素的内部排列,这种方法称为“捆绑法”; 某些元素不相邻排列时,可以先排其他元素,再将这些不相邻元素插入空挡,这种方法称为“插空法”; 在处理排列问题时,一般可采用直接和间接两种思维形式,从而寻求有效的解题途径。 组合一、 内容归纳1、知识精讲(1)组合 从n个不同元素中,任取m(mn)个元素并组成一组,叫做从n个不同元素中取出m个元素的一个组合。(2)组合数 从n个不同元素中取出m(mn)个元素的所有组合的个数,叫做从n个不同元素中取出m个元素的组合数,用符合C表示。组合数公式为C=这里,m,nN*,并且mn,组合数公式还可以写成C= 规定C=1 (3) 组合

12、数的性质C=C C=C+C2、重点难点:组合概念的理解及应用3、思维方式:与排列问题进行类比思考4、特别注意:分类时标准应统一,否则易出现遗漏和重复二、例题例1、某外语组有9人,每人至少会英语和日语中的一门,其中7人会英语,3人会日语,从中选出会英语与日语的各1人,有多少种不同的选法?解:由于73=109,所以9人中必有1人既会英语又会日语 从只会英语的6人中选1人,只会日语的2人中选1人,有N1=62=12 既会英语又会日语的那位选定,其余8人中选1人,有N2=18=8由分类记数原理得N= N1+ N2=20例2、从1,2,30这前30个自然数中,每次取不同的三个数,使这三个数的和是3的倍数

13、的取法有多少种?解:令A1,4,7,10,28,B2,5,8,11,29,C3,6,9,30组成四位数的方式有以下四类符合题意:A,B,C中各取一个数,有种;仅在A中取3个数,有种;仅在B中取3个数,有种;仅在C中取3个数,有种,故由加法原理得:1360种【评述】按元素的性质分类是处理带限制条件的组合问题的常用方法,对于某几个数的和能被某数整除一类的问题,通常是将整数分类,凡余数相同者归同一类例3、马路上有编号为1,2,3,10的十只路灯,为节约用电又看清路面,可以把其中的三只灯关掉,但不能同时关掉相邻的两只或三只,在两端的灯也不能关掉的情况下,求满足条件的关灯方法有多少种?解:问题等价于在七

14、只亮着的路灯产生的六个空档中放入三只熄掉的路灯,因此,所求的方法种数为C=20【思维点拔】 注意插空法的应用。解决一些不相邻问题时,可以先排一些元素然后插入其余元素,使问题得以解决。三、小结:1、组合数公式有两种形式,(1)乘积形式;(2)阶乘形式。前者多用于数字计算,后者多用于证明恒等式,注意公式的倒用。即由写出C。2、解受条件限制的组合问题,通常有分组法和排除法。3、排列问题类似,除注意两个计数原理的运用外,还要恰当地选择直接法或间接法。排列组合综合题 :对某种产品的6件不同正品和4件不同次品一一进行测试,至区分出所有次品为止,若所有次品恰好在第5次测试时被全部发现,则这样的测试方法有多少种可能?解:第5次必测出一次品,余下3件次品在前4次被测出,从4件中确定最后一件次品有种方法,前4次中应有1件正品、3件次品,有种,前4次测试中的顺序有种,由分步计数原理即得:()576。专心-专注-专业

展开阅读全文
相关资源
相关搜索

当前位置:首页 > 教育专区 > 教案示例

本站为文档C TO C交易模式,本站只提供存储空间、用户上传的文档直接被用户下载,本站只是中间服务平台,本站所有文档下载所得的收益归上传人(含作者)所有。本站仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。若文档所含内容侵犯了您的版权或隐私,请立即通知淘文阁网,我们立即给予删除!客服QQ:136780468 微信:18945177775 电话:18904686070

工信部备案号:黑ICP备15003705号© 2020-2023 www.taowenge.com 淘文阁