《第四节 平面曲线的弧长.ppt》由会员分享,可在线阅读,更多相关《第四节 平面曲线的弧长.ppt(15页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。
1、第四节 平面曲线的弧长n一、平面曲线弧长的概念n二、直角坐标情形n三、参数方程情形n四、极坐标情形n五、小结xoy0MA nMB 1M2M1 nM设设A、B是是曲曲线线弧弧上上的的两两个个端端点点,在在弧弧上上插插入入分分点点BMMMMMAnni ,110并依次连接相邻分点得一内接折线,当分点的数目并依次连接相邻分点得一内接折线,当分点的数目无限增加且每个小弧段都缩向一点时,无限增加且每个小弧段都缩向一点时,此折线的长此折线的长|11 niiiMM的极限存在,则称此极限为的极限存在,则称此极限为曲线弧曲线弧AB的弧长的弧长.一、平面曲线弧长的概念 设设曲曲线线弧弧为为)(xfy )(bxa ,
2、其其中中)(xf在在,ba上上有有一一阶阶连连续续导导数数xoyabxdxx 取取积积分分变变量量为为x,在在,ba上上任任取取小小区区间间,dxxx ,以对应小切线段的长代替小弧段的长以对应小切线段的长代替小弧段的长 dy小小切切线线段段的的长长22)()(dydx dxy21 弧长元素弧长元素dxyds21 弧长弧长.12dxysba 二、直角坐标情形例例 1 1 计计算算曲曲线线2332xy 上上相相应应于于x从从a到到b的的一一段段弧弧的的长长度度.解解,21xy dxxds2)(121 ,1dxx 所求弧长为所求弧长为dxxsba 1.)1()1(322323ab ab例例 2 2
3、计计算算曲曲线线 dnynx 0sin的的弧弧长长)0( nx.解解nnxny1sin ,sinnx dxysba 21dxnxn 0sin1ntx ndtt 0sin1dtttttn 0222cos2sin22cos2sindtttn 02cos2sin.4n 曲线弧为曲线弧为,)()( tytx )( t其其中中)(),(tt 在在, 上上具具有有连连续续导导数数.22)()(dydxds 222)()(dttt dttt)()(22 弧长弧长.)()(22dttts 三、参数方程情形例例 3 3 求求星星形形线线323232ayx )0( a的的全全长长.解解 星形线的参数方程为星形线的
4、参数方程为 taytax33sincos)20( t根据对称性根据对称性14ss dtyx 20224dttta 20cossin34.6a 例例 4 4 证证明明正正弦弦线线xaysin )20( x的的弧弧长长等等于于椭椭圆圆 taytxsin1cos2 )20( t的的周周长长.证证设正弦线的弧长等于设正弦线的弧长等于1sdxys 20211dxxa 2022cos1设椭圆的周长为设椭圆的周长为2s,cos12022dxxa ,20222dtyxs 根据椭圆的对称性知根据椭圆的对称性知 dttats 02222cos1sin2dxxa 022cos12,1s 故原结论成立故原结论成立.d
5、tta 022cos12曲线弧为曲线弧为)( )( rr 其中其中)( 在在, 上具有连续导数上具有连续导数. sin)(cos)(ryrx)( 22)()(dydxds ,)()(22 drr 弧长弧长.)()(22 drrs 四、极坐标情形例例 5 5 求求极极坐坐标标系系下下曲曲线线33sin ar的的长长. .)0( a解解 drrs )()(22313cos3sin32 ar,3cos3sin2 a.23a daa242623cos3sin3sin 30 d23sin 30a 0()3 例例 6 6 求求阿阿基基米米德德螺螺线线 ar )0( a上上相相应应于于 从从0到到 2的的弧弧长长.解解,ar drrs )()(22 .)412ln(412222 a 20 daa222 20a d12 平面曲线弧长的概念平面曲线弧长的概念直角坐标系下直角坐标系下参数方程情形下参数方程情形下极坐标系下极坐标系下弧微分的概念弧微分的概念求弧长的公式求弧长的公式 五、小结思考题思考题 闭区间闭区间,ba上的连续曲线上的连续曲线)(xfy 是否一定可求长?是否一定可求长?思考题解答思考题解答不一定仅仅有曲线连续还不够,必须保证不一定仅仅有曲线连续还不够,必须保证曲线光滑才可求长曲线光滑才可求长