《苏教版因数与倍数应用题练习(共4页).doc》由会员分享,可在线阅读,更多相关《苏教版因数与倍数应用题练习(共4页).doc(4页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。
1、精选优质文档-倾情为你奉上因数和倍数复习(1)一、自然数与整数形如0.1.2.3这样的数叫自然数,而整数不仅包括自然数也包括-1.-2.-3这样的数。二、因数与倍数1、概念:如果自然数a和自然数b的乘积是c,那么a,b是c的因数,c是a和b的倍数。2、因数、倍数的性质性质1:一个数最小的因数是1,最大的因数是它本身;一个数的因数的个数是有限的。性质2:一个数最小的倍数是它本身,没有最大的倍数;一个数的倍数的个数是无限的例题:1、一个数既是9的因数、又是9的倍数,这个数可能是( )。2、三个连续的偶数和是96,这三个数分别是( )、( )、( )。三、2、3、5的倍数的特征个位上是0,2,4,6
2、,8的数都是2的倍数。例如:202、480、304,都能被2整除。个位上是0或5的数,是5的倍数。例如:5、30、405都能被5整除。一个数各个数位上的数的和是3的倍数,这个数就是3的倍数。例如:12、108、204都能被3整除。个位上是0的数既是2的倍数又是5的倍数。例如:80、20、70、130等。个位上是0且各位数字的和是3的倍数,那么这个数既是2的倍数又是3和5的倍数。例如:120、90、180、270等。自然数按能否被2 整除的特征可分为奇数和偶数。也就是说是2的倍数的数也叫做偶数(0也是偶数),不是2的倍数的数也叫做奇数。(因此在自然数中,除了奇数就是偶数)偶数偶数=偶数 偶数偶数
3、=偶数 偶数偶数=偶数偶数奇数=奇数 偶数奇数=奇数 偶数奇数=偶数奇数奇数=偶数 奇数偶数=奇数 奇数奇数=奇数例题:1、12+34+56+。+199200的和是奇数还是偶数?2、有一个两位数5,如果它是5的倍数,里填( )。如果它是3的倍数,里可以填( ),如果它同时是2、5的倍数,里可以填( )。3、 226至少增加( )就是3的倍数,至少减少( )就是5的倍数。用0,4,5三个数字组成一个三位数,使它既能被2整除,又有约数3和5,其中最大的是( )4、能同时被2、3、5整除的最小的两位数是( )。(1)20 (2)30 (3)40四、质数和合数一个数,如果只有1和本身两个因数,这样的数
4、就叫做质数(也叫做素数)。一个数,如果除了1和本身还有别的因数,这样的数就叫做合数。奇数个不同的质数相加,如果没有偶数2,和一定是奇数。如果是偶数,其中一个质数是2.例题:1、几个质数连乘的积是( )。(1)质数 (2)合数 (3)偶数2、x、y是互质数,它们的最大公约数是( ),最小公倍数是( )。练习:1.三个连续偶数的和是24,这三偶数是( )、( )和( )。2.一个数既是12的约数,又是12的倍数,这个数是( )。(1)3 (2)12 (3)243.三个连续奇数的和是165,这三个数的平均数是( ),其中最大的数是( )。4.有四个小孩年龄是连续的自然数,他们的年龄之积是360,求最
5、小孩子的年龄。倍数例题:6.一个班的同学去春游,去时12个人坐一个车刚好,回来时8人坐一个车也刚好。问这个班最少有多少人?(4分)7.新图书馆开馆了,小红每隔3天去图书馆一次,小灵每隔4天去一次,请问小红和小灵某天在图书馆相遇后,经过多少天她们有可能会在图书馆再次相遇?8.1路和4路公共汽车同时从阳光车站出发,1路公共汽车每隔6分钟发一次车,4路公共汽车每隔8分钟发一次车,这两路公共汽车同时出发以后,至少过多少分钟才第二次同时出发?9.五年级一班学生进行队列表演,每行12人或16人都正好整行,已知这个班的学生不到50人,你能算出这个班有多少人吗?10. 练习2.3六一儿童节学校组织大型团体操表
6、演,要求队伍变成18行、20行和24行时队形都能成为长方形,至少需要多少人参加?11.甲乙丙三艘货轮,甲货轮每隔6天返回港口一次,乙货轮每隔4天返回港口一次,丙货轮每隔8天返回港口一次,10月1日同时从大连港口出发,最早几月几日三艘货轮又相遇?12.六年级同学参加环保宣传活动。9人一组多6人,8人一组多5人,10人一组多7人,参加宣传活动的同学有多少人?13.有一车苹果,每3箱一数,剩1箱;每5箱一数,剩1箱;每7箱一数,盛1箱。这车苹果至少多少箱?14.在一张长36厘米的纸条上,从左端起,先每隔3厘米画一个红点,再从左端起,每隔4 厘米画一个红点。纸条的两个端点都不画。最后,纸条上共有多少个
7、红点?因数例题:1. 幼儿园里有一些小朋友(人数在1020人之间),王老师拿了32颗糖平均分给他们,正好分完。小朋友的人数可能是多少?2. 班有48名同学,参加学校体操表演,要求排成长方形队形。每行或每列不得少于3人,可能是怎样的队列?(把所有的情况都写出来)3.有三根圆木,分别长12米、18米、24米。要把它们截成同样的长的小段,而且没有剩余,每根圆木最长是多少米?可以切多少段?4.王老师买了80枝康乃馨和48枝万寿菊,准备扎成花束带同学们去看望敬老院的老人们。要使每束花中康乃馨的数量相同,万寿菊的数量也相同,请你算一算,每束花至少有几枝?5. 有一个长方体木块,16cm,宽12cm,高8cm.把它切成大小相等的正方体,不准有剩余,那么正方体小木料棱长最大是多少?能切多少块?6.五一班买来46本书、32枝铅笔奖励各方面表现突出的同学。获奖的每个同学得到的奖品同样多,最后余下1本书和2枝铅笔。问最多有多少个同学得到奖品?专心-专注-专业