《2018年高考理科数学试题及答案全国卷(共15页).docx》由会员分享,可在线阅读,更多相关《2018年高考理科数学试题及答案全国卷(共15页).docx(15页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。
1、精选优质文档-倾情为你奉上2018年普通高等学校招生全国统一考试(全国卷)理科数学一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1设,则A B C D2已知集合,则A B CD 3某地区经过一年的新农村建设,农村的经济收入增加了一倍,实现翻番,为更好地了解该地区农村的经济收入变化情况,统计了该地区新农村建设前后农村的经济收入构成比例,得到如下饼图: 建设前经济收入构成比例 建设后经济收入构成比例则下面结论中不正确的是A新农村建设后,种植收入减少B新农村建设后,其他收入增加了一倍以上C新农村建设后,养殖收入增加了一倍D新农村建设后,养殖收入
2、与第三产业收入的总和超过了经济收入的一半4设为等差数列的前项和,若,则A B C D5设函数,若为奇函数,则曲线在点处的切线方程为ABCD6在中,为边上的中线,为的中点,则ABCD7某圆柱的高为2,底面周长为16,其三视图如图圆柱表面上的点在正视图上的对应点为,圆柱表面上的点在左视图上的对应点为,则在此圆柱侧面上,从到的路径中,最短路径的长度为ABC3D28设抛物线C:y2=4x的焦点为F,过点(2,0)且斜率为的直线与C交于M,N两点,则=A5 B6 C7 D89已知函数若g(x)存在2个零点,则a的取值范围是A1,0) B0,+) C1,+) D1,+)10下图来自古希腊数学家希波克拉底所
3、研究的几何图形此图由三个半圆构成,三个半圆的直径分别为直角三角形ABC的斜边BC,直角边AB,ACABC的三边所围成的区域记为I,黑色部分记为II,其余部分记为III在整个图形中随机取一点,此点取自I,II,III的概率分别记为p1,p2,p3,则Ap1=p2Bp1=p3Cp2=p3Dp1=p2+p311已知双曲线C:,O为坐标原点,F为C的右焦点,过F的直线与C的两条渐近线的交点分别为M、N.若OMN为直角三角形,则|MN|=AB3CD412已知正方体的棱长为1,每条棱所在直线与平面所成的角相等,则截此正方体所得截面面积的最大值为ABC D二、填空题:本题共4小题,每小题5分,共20分。13
4、若,满足约束条件,则的最大值为_14记为数列的前项和,若,则_15从2位女生,4位男生中选3人参加科技比赛,且至少有1位女生入选,则不同的选法共有_种(用数字填写答案)16已知函数,则的最小值是_三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。第1721题为必考题,每个试题考生都必须作答。第22、23题为选考题,考生根据要求作答。(一)必考题:60分。17(12分)在平面四边形中,.(1)求;(2)若,求.18(12分)如图,四边形为正方形,分别为的中点,以为折痕把折起,使点到达点的位置,且.(1)证明:平面平面;(2)求与平面所成角的正弦值.19(12分)设椭圆的右焦点为,过的
5、直线与交于两点,点的坐标为.(1)当与轴垂直时,求直线的方程;(2)设为坐标原点,证明:.20(12分)某工厂的某种产品成箱包装,每箱200件,每一箱产品在交付用户之前要对产品作检验,如检验出不合格品,则更换为合格品检验时,先从这箱产品中任取20件作检验,再根据检验结果决定是否对余下的所有产品作检验,设每件产品为不合格品的概率都为,且各件产品是否为不合格品相互独立学科&网(1)记20件产品中恰有2件不合格品的概率为,求的最大值点(2)现对一箱产品检验了20件,结果恰有2件不合格品,以(1)中确定的作为的值已知每件产品的检验费用为2元,若有不合格品进入用户手中,则工厂要对每件不合格品支付25元的
6、赔偿费用学.科网(i)若不对该箱余下的产品作检验,这一箱产品的检验费用与赔偿费用的和记为,求;(ii)以检验费用与赔偿费用和的期望值为决策依据,是否该对这箱余下的所有产品作检验?21(12分)已知函数(1)讨论的单调性;(2)若存在两个极值点,证明:(二)选考题:共10分。请考生在第22、23题中任选一题作答,如果多做,则按所做的第一题计分。22选修44:坐标系与参数方程(10分)在直角坐标系中,曲线的方程为.以坐标原点为极点,轴正半轴为极轴建立极坐标系,曲线的极坐标方程为.(1)求的直角坐标方程;(2)若与有且仅有三个公共点,求的方程.23选修45:不等式选讲(10分)已知.(1)当时,求不
7、等式的解集;(2)若时不等式成立,求的取值范围.专心-专注-专业参考答案与解析一、选择题:本题有12小题,每小题5分,共60分。1、【答案】C 【解析】由题可得,所以|z|=1 【考点定位】复数2、【答案】B 【解析】由题可得CRA=x|x2-x-20,所以x|-1x2 【考点定位】集合 3、【答案】A 【解析】由题可得新农村建设后,种植收入37%*200%=74%60%, 【考点定位】简单统计 4、【答案】B 【解析】3*(a1+a1+d+a1+2d)=( a1+a1+d) (a1+a1+d+a1+2d+a1+3d),整理得:2d+3a1=0 ; d=-3 a5=2+(5-1)*(-3)=-
8、10 【考点定位】等差数列 求和 5、【答案】D 【解析】f(x)为奇函数,有f(x)+f(-x)=0整理得:f(x)+f(-x)=2*(a-1)x2=0 a=1f(x)=x3+x 求导f(x)=3x2+1 f(0)=1 所以选D 【考点定位】函数性质:奇偶性;函数的导数 6、【答案】A 【解析】AD为BC边上的中线 AD=E为AD的中点AE=EB=AB-AE= 【考点定位】向量的加减法、线段的中点 7、【答案】BAA 【解析】将圆柱体的侧面从A点展开:注意到B点在圆周处。B最短路径的长度为AB=22+42 【考点定位】立体几何:圆柱体的展开图形,最短路径 8.【答案】D 【解析】抛物线C:y
9、=4x的焦点为F(1,0)直线MN的方程: 消去x整理得:y2-6y+8=0 y=2 或y=4M、N 的坐标(1,2),(4,4)则=(0,2)(3,4)=0*3+2*4=8 【考点定位】抛物线焦点 向量的数量积 如果消去,计算量会比较大一些,您不妨试试。9.【答案】C 【解析】根据题意:f(x)+x+a=0 有两个解。令M(x)=-a,N(x)=f(x)+x =ex+x x0lnx+x x0分段求导:N(x)=f(x)+x =ex+10 x01x+10 x0 说明分段是增函数。考虑极限位置,图形如下:M(x)=-a 在区间(-,+1上有2个交点。a的取值范围是C. -1,+) 【考点定位】分
10、段函数、函数的导数、分离参数法10.【答案】A 【解析】整个区域的面积: S1+S半圆BC= S半圆AB+ S半圆AC+SABC根据勾股定理,容易推出S半圆BC= S半圆AB+ S半圆ACS1= SABC 故选A 【考点定位】古典概率、 不规则图形面积 11.【答案】B 【解析】右焦点,OF=3+1=2,渐近线方程y=33x NOF=MOF =30在RtOMF中,OM=OF*cosMOF=2*cos=303在RtOMN中,MN=OM*tanNOM=3*tan(30+30)=3【考点定位】双曲线渐近线、焦点概念清晰了,秒杀!有时简单的“解三角”也行,甚至双曲线都不用画出来。 如果用解方程,计算量
11、很大。12.【答案】A 【解析】如图平面截正方体所得截面为正六边形,此时,截面面积最大,其中边长GH=22截面面积S=634(22)2=【考点定位】立体几何 截面【盘外招】交并集理论:ABD交集为3,AC交集为 34,选A二、填空题:本题共4小题,每小题5分,共20分。13.【答案】6 【解析】当直线z=3x+2y经过点(2,0)时,Zmax=3*2+0=6 【考点定位】线性规划(顶点代入法) 14.【答案】-63【解析】S1=2a1+1=a1 a1=-1n1时,Sn=2an+1,Sn-1=2an-1+1 两式相减:Sn-Sn-1= an=2an-2an-1 an=2an-1an=a12n-1
12、= (-1)2n-1S6=(-1)(26-1)=-63 【考点定位】等比数列的求和15.【答案】16【解析】C21C42+C22C41=26+14=16【考点定位】排列组合16.【答案】-332 【解析】f(x)=2sinx+sin2x=2sinx+2sinxcosx=2sinx(1+cosx)考虑到f(x)为奇函数,可以求f(x)最大值.将f(x)平方:f2(x)=4sin2x(1+cosx)2=4(1-cosx)(1+cosx)3=4/3(3-3cosx)(1+cosx)3(4/3)(3-3cosx)+3(1+cosx)/4)4= ()4=当3-3cosx=1+cosx 即cosx=12时
13、,f2(x)取最大值f(x)min=-332【考点定位】三角函数的极值,基本不等式的应用 【其他解法】:求导数解答f(x)=2sinx(1+cosx)看成单位圆中一个三角形面积求解。三.解答题:共70分。解答应写出文字说明、证明过程或演算步骤。第1721题为必考题,每个试题考生都必须作答。第22、23题为选考题,考生根据要求作答。(一)必考题:共60分。17.(12分)【答案】【解析】(1)在ABD中,由正弦定理得BDsinA=ABsinADB sinADB =ABsinADB/BD=25由题设可知,ADB90 cosADB=1-225=235(2)由题设及(1)可知cosBDC= sinAD
14、B =25在BCD中,由余弦定理得BC2=BD2+DC2-2BDDCcosBDC=25+8-2525=25BC=5 【考点定位】正弦定理 余弦定理18.(12分)【答案】【解析】(1)由已知可得PFBF ,BFEF BF平面PEF又BF在平面ABFD上 平面PEF平面ABFD (2) PHEF,垂足为H,由(1)可得,PH平面ABFD DP与平面ABFD所成角就是PDH.CD2=PD2=DH2+PH2=DE2+EH2+PH2= DE2+(EF-HF)2+PH2CF2=PF2=HF2+PH2设正方形ABCD的边长为2.上面两个等式即是:22=12+(2-HF)2+PH212=HF2+PH2解方程
15、得HF=12 PH=32在RtPHD中, sinPDH=PH/PD=32/2=34.【考点定位】立体几何 点、直线、面的关系19.(12分)【答案】【解析】(1)由已知可得F(1,0) ,直线l的方程为x=1由已知可得, 点A的坐标为(1,22)或(1, 22) 直线AM的方程为y= 22x+2 或 y= 22x2(2)当l与x轴重合,.OMA=OMB=00当l与x轴垂直,OM为AB的垂直平分线,所以OMA=OMB当l与x轴不重合且不垂直,设直线l的方程为y=k(x-1) (k0)点A(x1,y1), B(x2,y2) ,x12,X2400, 应该对这箱余下的所有产品作检验。【考点定位】随机变
16、量及分布:二项分布最值(基本不等式)、数学期望 21、(12分)【答案】【解析】(1)f(x)的定义域为(0,+)f(x)=-1x2-1+ax=-x2-ax+1x2=a2-4(i)若a2,则f(x)0,当且仅当a=2,x=1时f(x)=0,f(x)在(0,+)单调递减。(i)若a2,令f(x)=0得到,x=aa2-42当x(0,a-a2-42)(a+a2-42,+)时,f(x)0f(x)在x(0,a-a2-42),(a+a2-42,+)单调递减, 在(a-a2-42,a+a2-42)单调递增。(2)由(1)可得f(x)存在2个极值点当且仅当a2由于f(x)的极值点x1,x2满足x2-ax+1=
17、0 所以x1x2=1 不妨设x11 由于fx1-f(x2)x1-x2=1x1x2-1+alnx1-Lnx2x1-x2=-2+alnx1-Lnx2x1-x2=-2+a-2Lnx21/x2-x2等价于1x2-x2+2lnx20设g(x)= 1x-x+2lnx 由(1)可知g(x)在(0,+)单调递减,又g(1)=0,从而当x(1,+)时g(x)01x2-x2+2lnx20-kx+2 x0显然,K=0时,C1与C2相切,只有一个交点。K0时,C1与C2没有交点。C1与C2有且仅有三个交点,则必须满足K0) 与C2相切,圆心到射线的距离d= |-k+2|k2+1=2 故K=-4/3或K=0.经检验,因为K0,所以K=-4/3。综上所述,所求 C的方程y=-43x+2.【考点定位】极坐标与参数方程 直线与圆的关系23. 选修4-5:不等式选讲(10分)【答案】【解析】(1)当a=1时, f(x)=x+1-x-1=-2 x-12x -1x1不等式f(x)1的解集为x|x12(2) 当x(0,1)时不等式f(x)=x+1-ax-1x成立,等价于ax-10,当x(0,1)时ax-11的解集为0x=1 故0a2综上所述,a的取值范围是(0,2。 【考点定位】绝对值不等式 含参数不等式恒成立的问题