中考数学数与式(共9页).doc

上传人:飞****2 文档编号:14048908 上传时间:2022-05-02 格式:DOC 页数:9 大小:258.50KB
返回 下载 相关 举报
中考数学数与式(共9页).doc_第1页
第1页 / 共9页
中考数学数与式(共9页).doc_第2页
第2页 / 共9页
点击查看更多>>
资源描述

《中考数学数与式(共9页).doc》由会员分享,可在线阅读,更多相关《中考数学数与式(共9页).doc(9页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。

1、精选优质文档-倾情为你奉上第一篇 数与式专题一 实数一、中考要求:1在经历数系扩张、探求实数性质及其运算规律的过程;从事借助计算器探索数学规律的活动中,发展同学们的抽象概括能力,并在活动中进一步发展独立思考、合作交流的意识和能力2结合具体情境,理解估算的意义,掌握估算的方法,发展数感和估算能力3了解平方根、立方根、实数及其相关概念;会用根号表示并会求数的平方根、立方根;能进行有关实数的简单四则运算4能运用实数的运算解决简单的实际问题,提高应用意识,发展解决问题的能力,从中体会数学的应用价值二、中考热点:本章多考查平方根、立方根、二次根式的有关运算以及实数的有关概念,另外还有一类新情境下的探索性

2、、开放性问题也是本章的热点考题三、考点扫描1、实数的分类:实数2、实数和数轴上的点是一一对应的3、相反数:只有符号不同的两个数互为相反数 若a、b互为相反数,则a+b=0, (a、b0)4、绝对值:从数轴上看,一个数的绝对值就是表示这个数的点与原点的距离5、近似数和有效数字;6、科学记数法;7、整指数幂的运算: (a0) 负整指数幂的性质: 零整指数幂的性质: (a0)8、实数的开方运算:9、实数的混合运算顺序*10、无理数的错误认识:无限小数就是无理数如1(41 无限循环);(2)带根号的数是无理数如;(3)两个无理数的和、差、积、商也还是无理数,如都是无理数,但它们的积却是有理数;(4)无

3、理数是无限不循环小数,所以无法在数轴上表示出来,这种说法错误,每一个无理数在数轴上都有一个唯一位置,如,我们可以用几何作图的方法在数轴上把它找出来,其他的无理数也是如此*11、实数的大小比较: (1).数形结合法(2).作差法比较(3).作商法比较(4).倒数法: 如(5).平方法四、考点训练1、(2005、杭州,3分)有下列说法:有理数和数轴上的点一对应;不带根号的数一定是有理数;负数没有立方根;是17的平方根,其中正确的有( ) A0个 B1个 C2个 D3个2、如果那么x取值范围是() A、x 2 B. x 2 C. x 2 D. x23、8的立方根与的平方根的和为( ) A2 B0 C

4、2或一4 D0或44、若2m4与3m1是同一个数的平方根,则m为( ) A3 B1 C3或1 D15、若实数a和 b满足 b=+,则ab的值等于_6、在的相反数是_,绝对值是_.7、的平方根是( ) A9 B C9 D38、若实数满足|x|+x=0, 则x是( ) A零或负数 B非负数 C非零实数D.负数五、例题剖析1、设a=,b=2,c=1,则a、b、c的大小关系是()Aabc B、acb Ccba Dbca2、若化简|1x|,则x的取值范围是() AX为任意实数 B1X4 Cx1 Dx4 18c321215a202425b表二表三表四3、阅读下面的文字后,回答问题:小明和小芳解答题目:“先

5、化简下式,再求值:a+其中a=9时”,得出了不同的答案 ,小明的解答:原式= a+= a+(1a)=1,小芳的解答:原式= a+(a1)=2a1=291=17_是错误的; 错误的解答错在未能正确运用二次根式的性质: _4、计算:5、我国1990年的人口出生数为人。保留三个有效数字的近似值是人。六、综合应用1、 已知ABC的三边长分别为a、b、c, 且a、b、c满足a2 6a+9+,试判断ABC的形状2、数轴上的点并不都表示有理数,如图l22中数轴上的点P所表示的数是”,这种说明问题的方式体现的数学思想方法叫做( ) A代人法B换无法C数形结合D分类讨论3、(开放题)如图l23所示的网格纸,每个

6、小格均为正方形,且小正方形的边长为1,请在小网格纸上画出一个腰长为无理数的等腰三角形4、如图124所示,在ABC中,B=90 ,点P从点B开始沿BA边向点A以 1厘米秒的宽度移动;同时,点Q也从点B开始沿 BC边向点C以 2厘米/秒的速度移动,问几秒后,PBQ的面积为36平方厘米?5、观察表一,寻找规律表二、表三、表四分别是从表一中截取的一部分,其中a、b、c的值分别为 1234246836912481216A20、29、30 B18、30、26 C18、20、26 D18、30、28专题二 整式一、考点扫描1、代数式的有关概念(1)代数式是由运算符号把数或表示数的字母连结而成的式子(2)求代

7、数式的值的方法:化简求值,整体代人2、整式的有关概念(1)单项式:只含有数与字母的积的代数式叫做单项式(2)多项式:几个单项式的和,叫做多项式(3)多项式的降幂排列与升幂排列(4)同类项:所含字母相同,并且相同字母的指数也分别相同的项,叫做同类顷3、整式的运算(1)整式的加减:几个整式相加减,通常用括号把每一个整式括起来,再用加减号连接整式加减的一般步骤是:(2)如果遇到括号按去括号法则先去括号:括号前是“十”号,把括号和它前面的“+”号去掉。括号里各项都不变符号,括号前是“一”号,把括号和它前面的“一”号去掉括号里各项都改变符号(3)合并同类项: 同类项的系数相加,所得的结果作为系数字母和字

8、母的指数不变4、乘法公式(1).平方差公式:(2).完全平方公式: 5、因式分解(1).多项式的因式分解,就是把一个多项式化为几个整式的积分解因式要进行到每一个因式都不能再分解为止(2).分解因式的常用方法有:提公因式法和运用公式法二、考点训练1、的系数是 ,是 次单项式;2、多项式3x216x54x3是 次 项式,其中最高次项是 ,常数项是 ,三次项系数是 ,按x的降幂排列 ;3、如果3m7xny+7和-4m2-4yn2x是同类项,则x= ,y= ;这两个单项式的积是。4、下列运算结果正确的是( )2x3-x2=x x3(x5)2=x13 (-x)6(-x)3=x3 (0.1)-210-1=

9、10(A) (B) (C) (D)5、若x22(m3)x16 是一个完全平方式,则m的值是()6、代数式a21,0,x+,m,,3b中单项式是 ,多项式是 ,分式是 。三、例题剖析1、设2,求的值。2、若的积中不含有和项,求p、q的植。3、从边长为a的正方形内去掉一个边长为b的小正方形(如图1),然后将剩余部分剪拼成一个矩形(如图2),上述操作所能验证的等式是( ) Aa2-b2=(a+b)(a-b) B.(a-b)2=a2-2ab+b2C.(a+b)2=a2+2ab+b2 Da2+ab=a(a+b)四、综合应用1、将连续的自然数1至36按右图的方式排成一个正方形阵列,用一个小正方形任意圈出其

10、中的9个数,设圈出的9个数的中心的数为a,用含有a的代数式表示这9个数的和为_2、用火柴棒按下图中的方式搭图形(1)按图示规律填空:第n个图形123火柴棒根数(2)按照这种方式搭下去,搭第n个图形需要_根火柴棒3、右边是一个有规律排列的数表,请用含n的代数式(n为正整数),表示数表中第n行第n列的数:_专题三 分式一、考点扫描1分式:整式A除以整式B,可以表示成的形式,如果除式B中含有字母,那么称为分式注:(1)若B0,则有意义;(2)若B=0,则无意义;(2)若A=0且B0,则=0 2分式的基本性质:分式的分子与分母都乘以(或除以)同一个不等于零的整式,分式的值不变3约分:把一个分式的分子和

11、分母的公团式约去,这种变形称为分式的约分4通分:根据分式的基本性质,异分母的分式可以化为同分母的分式,这一过程称为分式的通分5分式的加减法法则:(1)同分母的分式相加减,分母不变,把分子相加(2)异分母的分式相加减,先通分,化为同分母的分式,然后再按同分母分式的加减法则进行计算6分式的乘除法法则:两个分式相乘,把分子相乘的积作为积的分子,把分母相乘的积作为积的分母;两个分式相除,把除式的分子和分母颠倒位置后再与被除式相乘7通分注意事项:(1)通分的关键是确定最简公分母,最简公分母应为各分母系救的最小公倍数与所有相同因式的最高次幂的积;(2)易把通分与去分母混淆,本是通分,却成了去分母,把分式中

12、的分母丢掉8分式的混合运算顺序,先算乘方,再算乘除,最后算加减,有括号先算括号里面的9对于化简求值的题型要注意解题格式,要先化简,再代人字母的值求值二、考点训练1、已知分式当x_时,分式有意 义;当x=_时,分式的值为0 2、若将分式(a、b均为正数)中的字母a、b的值 分别扩大为原来的2倍,则分式的值为( ) A扩大为原来的2倍 B缩小为原来的 C不变 D缩小为原来的3、分式,当x 时分式值为正;当整数x= 时分式值为整数。4、计算所得正确结果为( ) 5、若,则= 。6、若=_三、例题剖析1、求值:2、(2005、河南,8分)有一道题“先化简,再求值:,其中。”小玲做题时把“”错抄成了“”

13、,但她的计算结果也是正确的,请你解释这是怎么回事?3、已知:P=,Q=(x+y)2 2y(x-y),小敏、小聪每人在x2,y2的条件下分别计算了P和Q的值,小敏说P的值比Q大,小聪说C的值比P大请你判断谁的结论正确,并说明理由3、已知:4、若无论x为何实数,分式总有意义,则m的取值范围是 。 四、综合应用1、已知ABC的三边为a,b,c,=,试判定三角形的形状2、(阅读理解题)阅读下面的解题过程,然后解题: 题目:已知 求x+y+z+的值 解:设=k, , , 仿照上述方法解答下列问题: 已知: 专题四 二次根式一、考点扫描1二次根式的有关概念(1)二次根式 叫做二次根式注意被开方数只能是正数

14、或O(2)最简二次根式 被开方数所含因数是整数,因式是整式,不含能开得尽方的因数或因式的二次根式,叫做最简二次根式(3)同类二次根式 化成最简二次根式后,被开方数相同的二次根式,叫做同类二次根式2二次根式的性质3二次根式的运算(1)二次根式的加减先把各个二次根式化成最简二次根式;再把同类三次根式分别合并(2)三次根式的乘法(3)二次根式的除法二、考点训练1、(2006年南通市)式子有意义的x取值范围是_2、(2006年海淀区)下列根式中能与合并的二次根式为( ) A、 B、 C、 D、3、(06烟台市)若 ,则 =_4、(2005年福州市)下列各式中属于最简二次根式的是( )A、 B、C、 D

15、、5、(2006年连云港市)能使等式成立的x的取值范围是( )Ax2 Bx0 Cx2 Dx26、(2005年长沙市)小明的作业本上有以下四题:=4a;a;a;(a0),做错的题是( )A B C D7、对于实数a、b,若=b-a,则( )Aab Bab Cab Dab8、当1x2时,化简1x的结果是( )A、1 B、2x1 C、1 D、32x三、例题剖析1、(1)若0x0,b0)分别作如下的变形:甲 =; 乙:=. 这两种变形过程的下列说法中,正确的是( ) A甲、乙都正确 B甲、乙都不正确 C只有甲正确 D只有乙正确5、四、综合应用1、(2006年内江市)对于题目“化简求值: ,其中a=”甲、乙两人的解答不同甲的解答是: =乙的解答是:=,谁的解答是错误的是,为什么?2、(2006年桂林市)观察下列分母有理化的计算: 从计算结果中找出规律利用规律计算:3、如果1424,那么23的值专心-专注-专业

展开阅读全文
相关资源
相关搜索

当前位置:首页 > 教育专区 > 教案示例

本站为文档C TO C交易模式,本站只提供存储空间、用户上传的文档直接被用户下载,本站只是中间服务平台,本站所有文档下载所得的收益归上传人(含作者)所有。本站仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。若文档所含内容侵犯了您的版权或隐私,请立即通知淘文阁网,我们立即给予删除!客服QQ:136780468 微信:18945177775 电话:18904686070

工信部备案号:黑ICP备15003705号© 2020-2023 www.taowenge.com 淘文阁