《工程数学作业(第四次)(共3页).docx》由会员分享,可在线阅读,更多相关《工程数学作业(第四次)(共3页).docx(3页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。
1、精选优质文档-倾情为你奉上工程数学作业(第四次)第6章 统计推断(一)单项选择题 设是来自正态总体(均未知)的样本,则(A)是统计量 A. B. C. D. 设是来自正态总体(均未知)的样本,则统计量(D)不是的无偏估计 A. B. C. D. (二)填空题 1统计量就是 不含未知参数的样本函数 2参数估计的两种方法是 点估计 和 区间估计 常用的参数点估计有 矩估计法 和 最大似然估计 两种方法 3比较估计量好坏的两个重要标准是 无偏性 , 有效性 4设是来自正态总体(已知)的样本值,按给定的显著性水平检验,需选取统计量 5假设检验中的显著性水平为事件(u为临界值)发生的概率 (三)解答题
2、1设对总体得到一个容量为10的样本值4.5, 2.0, 1.0, 1.5, 3.5, 4.5, 6.5, 5.0, 3.5, 4.0试分别计算样本均值和样本方差解: 2设总体的概率密度函数为试分别用矩估计法和最大似然估计法估计参数 解:提示教材第214页例3矩估计:最大似然估计:, 3测两点之间的直线距离5次,测得距离的值为(单位:m):108.5 109.0 110.0 110.5 112.0测量值可以认为是服从正态分布的,求与的估计值并在;未知的情况下,分别求的置信度为0.95的置信区间解: (1)当时,由10.95, 查表得: 故所求置信区间为: (2)当未知时,用替代,查t (4, 0.05 ) ,得 故所求置信区间为:4设某产品的性能指标服从正态分布,从历史资料已知,抽查10个样品,求得均值为17,取显著性水平,问原假设是否成立 解:,由 ,查表得:因为 1.96 ,所以拒绝 5某零件长度服从正态分布,过去的均值为20.0,现换了新材料,从产品中随机抽取8个样品,测得的长度为(单位:cm):20.0, 20.2, 20.1, 20.0, 20.2, 20.3, 19.8, 19.5问用新材料做的零件平均长度是否起了变化()解:由已知条件可求得: | T | 2.62 接受H0即用新材料做的零件平均长度没有变化。专心-专注-专业